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1 Introduction

1.1 Use case description - starting point

As cooperation between the TUM Data Innovation Lab and Bosch Siemens Home Ap-
pliances GmbH (BSH), this project focuses on the analysis of a Deep Drawing Process
(DDP) for the inner door of a dishwasher at the plant of BSH Dillingen. The latter suffer-
ing under sporadically occurring cracks in the metal plates during the DDP, the aim from
BSH was to start a data-driven production process, in order to identify the reason behind
the crack occurrences (in average 34 cracked parts per month) and reduce waste through
cracked parts. Consequently, as preparatory work to this project dedicated sensors were
installed on one involved tool in the frame of a bachelor thesis (e.g. measuring forces,
distances, room temperature etc.). Afterwards data was gathered based on this bachelor
thesis.

Henceforth, an important differentiation between the technological perspective and the
sensor data perspective is made, as during this work on one hand a detailed analysis on
the root cause of the crack occurrences was conducted (Failure Mode and Effects Analysis
(FMEA), see chapter 2), as well as a thorough data analysis of the provided sensor data.
From the technological perspective, as pre-knowledge, it is known that the production
of dishwashers represents a complex process having a high degree of automatization and
requiring a high quality of the final product. The occurrence of cracks during a DDP
is therefore not tolerable. The DDP of the inner door takes place on a 36 year old
triple-acting hydraulic press, not disposing of capabilities to implement sensors directly
within the control system without a high investment cost. No assumptions or ideas on
the root cause for the occurrence of cracks exist, neither from operators of the hydraulic
press, nor from the involved industrial engineers at the plant. This project systematically
investigates patterns for the occurrence of cracks.

1.2 Objective - desired output

As cooperation between the TU Munich and its scientific claim as well as the industrial
partner BSH GmbH it is particularly important for the project team to agree on common
goals and framework conditions. For this reason, special emphasis was placed on the
definition of results at a kick-off event. All the interest groups involved took part in this
event. These include the production staff from Dillingen, the data science team from
Munich, as well as the interests of the university and the student project team. However,
it should be noted that the desired output differs from the realized output. In the further
course of this paper we will refer to this and explain what caused this difference. As a
template for the definition of the intended goals, the BSH template was used by agile
data science projects to create a common understanding of the ”Definition of Done”.
This includes a common understanding of communication channels and tools. Figure [1]
illustrates the description of the project goals. Additionally, the ”Definition of Done” is
completed by the determination of the acceptance criteria. In the present project three
criteria were agreed upon, which should be present in the final result:
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B As an engineer/fmachine operator B Consume Data
B | want to know when and why cracks occur Select 7 m Automated Al for i4.0
B | would like to detect cracks at the drawing-machine in real time (<=1s) stralegic ® Data provisioning
and then take countermeasures, e g. stop the machine or signalize a fit? S Make/Deli
trend. FlErEs (Source/Make/Deliver)
Use case description | ® During the deep drawing process, sometimes cracks occur in the metal select:
plates, about one per shift. It is not known why this happens. A XDK-
sensor has been installed to monitor the machine especially the drawing [ :
tool. The produced data shall be used to give a better understanding of Scalable/ Slmllal.- Machines / Other
the drawing-process itself and give insights about the occurrence of reusable? | Factories
cracks and as well a real time algorithm that triggers an alarm when
cracks occur or are likely to occur. Product PDC DIIIIngen
B What is the goal of this prototype? Division/
Avoidance of cracks by fast real-time detection of trends, which are Factory
leading to cracks, through a developed algorithm (in a high-level .
programing language) which is evaluating (<=1s) the collected data very Process Deep drannQ
close to the machine (i. e. Node-Red on the InnoLab-Server)
Goal B Finding the root cause for cracks. What parameters on the
“machine”/"tool of the machine” is causing the cracks. Which parameter Machine
influences the deep-drawing process in which way.
B What is the max. potential? Deep dan detailed understanding of the Julia krausju@bshg.com
process Contact Thomas.hummel@bshg.com
B Reduce waste

B Understanding and improving the process itself and generate knowledge
Value also applicable for other deep-drawing processes
B Knowing the cause for developing cracks and be able to avoid them

ROI B Estimated benefit €lyear
B XDK sensor

Data source or B Datais already available in S3
B Lightcheck (machine that detects the cracks, S7), data is available in S3
B From factory side we're always willing to support the analytics team in

any matters. If there are any wishes (1. e. from the students side) or
Comments needs that will help to reach the goeals faster or easier, just let us know
soon enough. Because the sooner we know, the faster we can trigger
the processes to implement new ideas.

Figure 1: Project goal and summary

e Algorithm (in a high-level language) close to the machine (i.e. InnoLab server) that
is able to determine (j=1 sec.) with the collected data whether the produced part
has cracks or is good.

e Ability of recognizing trends (algorithms).

e Root cause identification of crack occurrence (which parameter influences the DDP
in which way).

Due to problems with data quality and interpretability, the first two acceptance criteria
were modified by all stakeholders. The project will now be accepted if an error model is
established which allows the cracks to be explained and also contains recommendations
for action which can be implemented in production.

1.3 Planned approach

The project team decided to work on the whole project in an agile way (using SCRUM), as
this development model allows for targeted and fast adaptation in a dynamic environment
with uncertainty. New findings could be adapted quickly and efficiently. In order to better
understand and apply the still young development methodology, the project team was
allowed to participate in an online seminar by SCRUM expert David Cole. He explained
the general aspects of the project, but also explained to the team which mistakes have to
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be avoided (for example the direct communication with the team members when a problem
occurs). The applied SCRUM sprints had a duration of 2 weeks and were concluded with
a sprint retrospective and a presentation in front of the complete ”Sirius data science
team” from Munich and Istanbul. In the following the major milestones of the project
are briefly described:

e Starting phase: At the kick-off all stakeholders met for the first time and the foun-
dation for the project was laid. The first weeks of the project were determined by
the setup of all required accesses and authorizations. Furthermore, parallel work
was done on the problem, technology, process understanding, among other things
by a literature research search.

e Data preparation, EDA and FMFEA: Data cleaning is a central component, as it
is here that decisions are made on how to deal with missing values, outliers, etc..
In order to better understand the influencing factors, questions were asked to the
machine operator. An iterative implementation of the FMEA is intended to increase
the understanding of the process and also provide explanations for the development
of cracks. The implementation of the EDA is also central, as in this case basic
patterns and descriptive descriptions have been used to increase understanding of
the data set and the information it contains.

e FExcursion to the production plant: A special event was the visit of the production
in Dillingen as it not only increased the process and machine understanding, but
also allowed the team to see themselves in reality for the first time.

e Data labeling and implementation recommendations: The data labeling was carried
out iteratively in two steps. First, an attempt was made to classify the cracks
by means of the information email, then by means of the light detection sensor in
the production line. It was planned to perform prediction modeling at the end of
the project, but this could not be done because central data was missing. This
is explicitly discussed in the report. Recommendations for implementation were
developed jointly, covering both technical and data scientific aspects.

2 Analysis of deep drawing process (DDP)

2.1 Technical overview

The deep drawing is a mechanical process, which can be assigned to forming technology
[ |. The process is classified by tension forming according to DIN 8584, whereby
the classification is based on the prevailing stress conditions [ ]. A special feature
of this process is that a combination of different forces / stresses can be present. This
fact explains the high complexity of the process as well as the high relevance of process
experience. Also other studies illustrate how complex the modeling of the behaviour is
[ ]. According to Doege and Behrens | | the DDP is characterized by the fol-
lowing three different stresses. Firstly Tensile and pressure stresses prevail in the flange
area. Secondly in the floor area, tensile and compression stresses occur. Finally the great-
est complexity is found in the run-out of the punch edge, since here there is an obstructed
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uniaxial tensile stress, which leads to a direct or indirect tensile stress input, neglecting
the normal stress. For this project, however, the stresses and associated physical forces
in the edge region are particularly important, since this is where the cracks in the metal
plate show up. For this reason, it is particularly important to relate the scientific findings
presented in the following to this fact. In the following, different technical processes of
the DDP will be discussed. Essential for this project are tolerances of the process and the
machine. An engineer weighs up how imprecise a component/product can be in order to
be able to just fulfil the technical function. Production engineering systems are a product
that consists of an interaction of different components and tolerance specifications. In
order to be able to make statements for the present project about the causes of the oc-
curring cracks it is essential to better understand the accuracies of the present machine.
Forming machines are classified according to | | in two accuracy parameters. The
first classification are the geometrical accuracies include achievable deviations from the
ideal value on the unloaded machine, which can include movement play of components
as well as geometrical deviations. On the other hand, there are elastic yielding points
on the moving machine which can lead to deviations from the ideal value due to static
or dynamic loads. The deep drawing machine used is 36 years old and for this reason
technical documentation of the machine is only available to a limited extent. This fact
makes it difficult to find the cause, but the machine operator of the machine has a lot
of experience and expertise. On the basis of this experience it is possible to look at the
tolerances in the machine. It should be particularly emphasized that even very small
deviations from the value considered ideal result in the formation of cracks. In addition,
the maintenance of the machines has a great influence on the DDP - this is confirmed by
machine operators and literature | .

Another very important aspect is the material behaviour of the metals used which has
a great influence on the formation of cracks. On the one hand it is important to take a
closer look at the type of alloys used and their metallurgical properties. Basically two
types of deformation are distinguished, namely reversible/elastic deformation and irre-
versible/plastic deformation | ]. In deep drawing, an irreversible plastic deformation
is carried out, which means that the formed workpiece undergoes a permanent change
in shape. The deformation behaviour for metallic materials is investigated by means of
stress-strain diagrams. These diagrams describe the material behaviour of metallic ma-
terials in a homogeneous uniaxial stress state | ]. This must be distinguished from
dynamic oscillation behaviour, which can be described, for example, by Woehler lines. In
the present project, the oscillation behaviour is not considered, since the acting velocity
is constant during the whole process | | and no change of force direction affects the
material. Central components of a stress-strain diagram are the tensile strength (Rm)
as well as the elongation and yield strengths. These characterize the elastic and plastic
behavior of materials. For the alloys used in the project, the stress-strain behavior is
unknown. However, it can be assumed that only a small gain of information could be
achieved by this, since the process itself already works without them. Important factors
influencing the forming behaviour are the temperature and the test speed | |. The
strength of the material decreases with increasing temperature | ]. Strength is a met-
allurgical property which includes the resistance of a material to deformation and fracture
[ |. In contrast, ductility is understood to be the malleability of the material and
both properties must be combined with each other, whereby an increase in one property
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results in a decrease in the other. Also a temperature influence results in a reduction of
strength but an increase of ductility | |. DDPs can be further subdivided according
to the temperature applied | |. In the present project, this is a cold forming process
according to DIN 8582 where the workpiece is not heated (room temperature) before. This
temperature means that the press has to apply higher forming forces in order to change
the shape, but high accuracies can be achieved [ |. In addition, it is important that
the forming process is usually carried out in several steps.

2.1.1 Cracks

In the present project it is important to deal with the process to be avoided, especially
this understanding helps to better consider effects and interrelations. A bad component is
characterized by the fact that it does not meet the tolerances to be fulfilled. In the present
case, it is a defect pattern which has a crack in the component. A crack is characterized
by the fact that the surface of the material is not continuously connected everywhere. As
a result, the manufactured component has changed material properties due to the weak
point, which are not justifiable from a business point of view. Tears occur when the total
force is equal to or greater than the breaking force - this is how Doege and Behrens | ]
summarize the statements of Melching and Doege | ]. It should be noted, that this
situation can occur for many reasons (e.g. temperature, speed, ductility/strength, ...).
There are also connections with other classifications of errors. In general, there are four
types of failure in deep drawing | ]. 1) Wrinkle formation of the 1st type is formed in
the flange area by tangential tensile stresses of the workpiece. The resulting wrinkles are
drawn over the drawing ring into the drawn part and thus change the material properties
or the surface. For this project, this type of error is not important because the flange area
with its waviness is removed. 2) Wrinkles of the 2nd type are waviness that are formed
in free forming zones between the punch and the drawing ring. This error type is to be
excluded for this project, because the error patterns do not match. 3) Cracks usually
occur in the area of the punch edge run-out or in areas with large plastic deformation, as
the forming forces are particularly high in these areas. In the present project, this type of
defect is the relevant one and also the location of the defects is the same. 4) Springback is
understood to be a deformation behaviour in which elastic components occurring during
plastic deformation cause the component to warp. This type of defect is currently only
partially detected because the scarring is all matched. The defect is not relevant for the
project-specific investigation

2.1.2 Preprocesses

The DDP is integrated into a highly automated production line (VDCD/ GV640A). The
central point here is that there are previous processes which have an influence on the
DDP. It starts with the production of the metal and the delivery on large coils. These
coils are then cut to size and coated with a polymer coating. They are then stacked and
individually coated with a continuous oil film. They are then placed in the deep drawing
machine and further processed in four stages. At the end of the DDP in the production
line, four light sensors are used to determine whether the part produced is defective or
not. The machine operator is informed about defective components. Generally, defects
always occur in a series. According to the experience of a machine operator, there are
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usually ca. 6 bad parts in a row. In the following, the individual components of the highly
automated production line are described in detail. In particular, the function and then
the technology are always discussed first. Each section is concluded with an assessment of
why this component is important for this scientific project. All processes that are carried
out after the DDP and the transmitted light test can be excluded as influencing factors,
as the cracks have already appeared before.

For the DDP a material is needed which should undergo the deformation. This material
is produced in steel mills and is delivered to BSH on large rolls which are called coils.
The material used is the Ampco 25 centrifugal casting (”Schleuderguss”) alloy. Quality
checks at both the manufacturer and BSH ensure that the materials have the required
material properties. BSH has several suppliers for this. The manufacturing process of
the coils is also subject to fluctuations that are within a tolerance range. For example,
the material composition of the alloy can vary locally and this can extend over several
meters of the coil. This can result in a series of faulty DDPs because the composition of
the alloy has different material properties. It is not possible to check this cause because
the material properties themselves cannot be measured, but their effects can be observed.
A further possibility of influence is the rolling process by which the coils are produced.
In this rolling process, varying pressure loads are applied to the hot metal and the shape
becomes a very long plate. This sheet is then cut to size and rolled into coils. During the
rolling process as well as the cutting process forces are applied to the workpiece. These
forces absorbed by the material are called internal stresses. During the rolling process,
directional residual compressive stresses are generated. During the DDP, the residual
stresses can have a negative influence on the drawing behaviour. Thus, materials subject
to residual stresses may fail earlier because the actual resulting stress is composed of
residual stress and externally introduced stresses | |. However, it should be noted
that compressive loads in the edge areas have a positive effect on the forming process,
since the compressive stresses must first be compensated before critical tensile loads (which
can lead to cracks) can occur [ |. Tt is also not possible to actively intervene in this
process, only the influences on the DDP can be observed. BMW avoids this process by
measuring each blank and making it clearly identifiable [ ].

After the coils have been cut to size at BSH, they are prepared in the feeder and checked
for scratches, bends, etc.) and then positioned (machine report). In the coating plant,
the polymer ”Quaker TF 11”7 is applied to the metal blanks over the entire surface. The
function of the polymer is to protect the metal surface from handling damage, for example
from scratches. The applied technique of coating works by applying a spray mist on both
sides of the metal plates. The metal plates are then dried, cooled and stacked. The
surface loading is measured randomly. There are also specifications for this, for example
a coating thickness of 1.4 pym and a permitted tolerance of +0.3/-0.2. The relevance
for this project is that an insufficient coating thickness has a negative influence on the
subsequent forming process. For example, friction can be increased locally, which can
have direct effects on the DDP. Especially this fluctuating coating thickness can manifest
itself over several metal plates.

Directly in front of the deep drawing machine an oil film is applied on both sides and
flatly covering the metal plates. This oil film is of great importance for the feasibility of
the subsequent DDP. According to statements by experienced machine operators, even a
small deviation of the oil film leads to cracking of the workpiece. The function of the oil
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film is to reduce the friction of the material. In addition, the oil film can also prevent
metallurgical processes such as oxidation. The oil film is applied on both sides by a
continuous spray jet. Coarse contamination of the oil film can be excluded as a cause for
crack formation, as marks can be seen in the workpiece. The serial occurrence of cracks is
also unlikely in the case of coarse contamination. However, fluctuating oil properties can
have an influence on the formation of cracks. For example, oil temperature, consistency
and age have a direct influence on the entire process. The relevance for this project is
that even small deviations from the ideal oil wetting can have a major impact on crack
formation. Even with this cause only the effects can be described/observed, so that an
active modeling of the processes is not possible.

2.1.3 Deep drawing process line and machine

The central process which should be better understood by this project work is the DDP
in which the forming of the metal plates takes place. There are two production lines in
the production in Dillingen which can perform identical processes. It should be noted
that only one process line can be equipped with the sensors and also just one tool (8578).
Small deviations from the ideal condition of this tools directly manifest themselves in a
defective component. The actual forming process takes place in four process steps. It
starts with the actual DDP, which is the process with the greatest shape transformation.
Then the formed workpiece is cut to size so that the edges are removed. Subsequently,
components are removed from the workpiece in a stamping process. The DDP is completed
by a bending process. The crack formation is clearly due to the process of the largest
forming. This can also be proven by the fact that when a crack is detected, all parts
up to and including the DDP are defective. Because a cold DDP is carried out, the
forces to be applied by the machine are greater | ]. Thus the upper punch (”Oberer
Stempel”) can apply a pressure of 80-90 tons (machine report). The hold-down device
(" Niederhalter”), on the other hand, can apply the greatest forces, namely between 175
and 200 tons (machine report). The die (”"Matrize”) on the other hand can apply a
pressure of 110 to 130 tons. The DDP itself works in such a way that the metal plates
wetted with oil are placed in the deep drawing machine by a vacuum gripper. Then the
die and holding-down device clamp the metal plate and the upper punch moves parallel
to the metal plate. The speed of the punch as well as the clamping forces of the die and
the hold-down device are adjusted once on the basis of experience. It is important that
this clamping holds back material and thus avoids wrinkling | |. As the punch moves
downwards at a constant speed, material has to be re-filled which is forged to the mould.
This flow is regulated by four drawing bars which limit the flow rate. After the maximum
traversing speed is reached, the upper punch, hold-down clamp and die move apart again.
The upper punch as well as the lower punch have the shape of a negative image of the
workpiece and they fit into each other. The formed workpiece is located between the
upper and lower punch.

2.1.4 Sensors

In order to be able to analyse the data, it is particularly important to know how they
are recorded. For this analysis, different sensor data are available, which are directly
attached to one production line and one tool. In the following, the individual sensors
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used are described. A light detection system is installed in the production line. This
checks in absolute darkness whether light can pass through the formed metal. If there is a
crack, the light is detected on the other side and the component is classified as defective.
In addition, camera shots are taken from different angles. These images are time stamped
and stored in the cloud. Additionally, three ultrasonic sensors UFP-400 of the company
"Waycon” are installed on one tool. The decision for this type of sensor was made on the
basis of the short scanning time of 40 - 60 milliseconds | ]. The ultrasonic sensors
measure the travelled path of individual components (hold-down device, upper punch and
die) of the deep drawing machine. The path measurement is based on an interpolation
of the measured voltage and the stored distances or their voltages between position 1
and position 2 | |. In addition, resistor circuits (shunts) are installed, which enable
the analog - digital converter of the micro-controller to read out the data | . It
should be noted that it is currently not certain whether the data acquired can record
the change in behaviour of a crack. There is a danger that the large mass of the tool
will absorb the changes. In order to be able to measure the forces acting, three strain
gauges are placed at different locations on the tool. The strain gauges measure changes in
the resistance, which are then calculated back to the existing force. Measurements with
strain gauges are always characterized by the fact that they have a large tolerance range.
To reduce additional sources of interference, strain gauges with a resistance of 350 Ohm
are installed | |). Measurement signals are transmitted to the micro-controller. The
micro-controller used in the bachelor thesis is a Bosch XDK ” Cross Domain Development
Kit”. It is mounted on the outside of the tool. The XDK has different inputs which
receive the measuring signals of the sensors. In addition, it has its own sensors which can
measure temperature, humidity and vibration. The micro-controller processes the signals
and then forwards them to the cloud | ]. Tt is controversial, however, whether the
additionally recorded values represent an added value for the analysis. For example, the
signals are recorded outside the critical range, and analysis of the recorded data also
shows that they naturally fluctuate. The project team comes to the conclusion that only
large deviations can be recorded with these additional data. A further uncertainty is the
performance of the micro-controller, so it cannot be clearly determined whether the micro-
controller is capable of processing all the information. In addition, it might be possible
to obtain information about the frictional conditions of the DDP using acoustic sensors
[ | but for this adjustments of the setup must be made. Since the recorded signals
of the sensors also always record interfering signals and these disturb the analysis. For
this reason, in the previous bachelor thesis digital filters (e.g. Nyquist-Shannon-Theorem
and Alias Effect) and analogue filters (e.g. low pass filters) were applied to the acquired
data | |. The filtering of the signals has been verified by the project team, but it is
possible that minimal deviations caused by crack formation are filtered out. However, it
should be noted that these would probably not have been detectable/identifiable.

2.2 Failure Mode and Effects Analysis (FMEA)

The objective of this scientific project is to make predictions about the condition of the
metal plates and their risk of cracking. A pure prediction without deeper knowledge
about the process itself is not useful for the stakeholders of the production, because their
incentive is a continuous improvement according to the " Toyota Production System”. For
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this reason it is particularly important for them to better understand the DDP in order to
be able to apply preventive measures. At present, a deeper understanding of the sources
of errors is not yet available. During the course of the project, the team considers different
product development methodologies. These methods (Root Cause Analysis, Petri Nets,
...) allow a systematic investigation of the error sources, causes and influencing factors.
With an overall consideration of the required input information as well as the desired
results, only an iterative execution of the process FMEA fulfils these requirements. The
abbreviation FMEA stands for Failure Mode and Effects Analysis, which provides cross-
functional teams with a uniform view of the possible failure modes and their behavior.
A FMEA iteration is normally carried out in five process steps | ]. At the end
of an iteration there is a first possible modeling of the reality of a process. With each
further iteration, the understanding of the prevailing processes and failure mechanisms
increases. The first step of FMEA is to consider the product structure. In this process
step the physical components of the process are considered and their relationships to each
other are shown in a graph. As the complexity of the deep drawing machine at hand
is very high and the available technical information is very limited due to the age of
the machine. The project team uses abstractions for modeling. In a classical FMEA a
time separation between the modeling of the system components and the corresponding
functional modeling. After an extensive investigation, the project team finds that the
FMEA process steps 1 and 2 must be combined, since abstraction of the complexity is
only possible to a limited extent. Functions in this context are connecting attributes
that describe the interaction of system components. The most important process step
of each FMEA is the modeling of the failure processes. For this purpose, a failure tree
is created for the modeling of the failure chain in two steps. First, the type of failure is
described, for example an abrupt change of movement of the control. Afterwards it is
considered what the failure consequences are. In the present example these would be the
crack formation, a change of the graph will be visible in the data as well as the cracks can
show a serial behaviour. The first investigation stage is completed by the investigation of
the failure causes. Here it should be mentioned that the flow velocity of the metal would
be slower than the required flow velocity required by the change of path. This type of
failure cause can be caused by control or measurement processes (e.g. absolute and not
relative travel). In the second stage, the actual failure tree is now modelled on the basis
of the first stage. Here the modeling is divided into the DDP and the pre-processes. The
modeling itself takes place using a color-coded flow chart. Figure [2] shows the Failure
Tree for the preprocessing. It was found that the reasons for failure can be very diverse,
but the failure itself is always based on the same failure pattern. The flow behaviour of
the metal is affected by friction, contamination, temperature, vibration, ... with the result
that there is not enough material to handle the deformation forces. After creating the
failure tree, a risk priority number is assigned to each failure type in the fourth process
step. Based on the literature, points for the characterization of the failure are given. The
characterization is carried out on the basis of severity, occurrence and detection. Severity
describes how comprehensive the failure is. The occurance describes how probable the
presence of the failure is and the detection describes how probable it is to notice the
failure. The greater the values assigned on the basis of the literature, the more important
it is to investigate and reduce the error. The FMEA is completed by sorting the failures
according to the risk priority number and defining activities starting with the highest risk
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priority number. The FMEA is very comprehensive, only excerpts are included in this
report. The complete FMEA is available to BSH and can be viewed upon request.

Figure 2: Part of the FMEA failure tree - illustrating the preprocessing

3 Exploratory Data Analysis (EDA)

Within the EDA two main questions were sought to be answered. Are and if so how are
cracks represented in the data collected by the installed sensors? How can the cracks be
characterized apart from the provided data from the sensors?

While the first question is referring to potential outliers and anomalies in the sensor data
and whether they can be traced back to actual crack occurrences (important for data
labeling), the second questions deals with the timely distribution of crack occurrences
and their physical variance (different lengths and positions on the metal sheet) based on
data generated from a separate light detection sensor.

3.1 Analysis of sensor data

Although all sensor data undergoes preprocessing (see chapter 2) before being visualized
within the Production Performance Manager (PPM) it is nevertheless useful to firstly
check how consistent the collected data is. As next steps possible outliers can be inter-
preted in order to decide whether they are caused by faulty sensor data or whether they
represent the actual occurrence of cracks.

3.1.1 Identifying and interpreting outliers

In figure [3] two boxplots showing respectively the distances of the inner stamp (”Stem-
pel”), the die ("Matrize”) and the hold-down clamp (”Niederhalter”), as well as a density
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Figure 3: Boxplots of sensor values (mean and variance) and average cycle time duration

plot and a violin plot both displaying a distribution of the cycle duration are visual-
ized. Both the variance and the mean of the distance values (boxplots) are relatively
concentrated without a clear occurrence of whiskers. The few outliers, especially for the
distances of the die have as next step (see next chapter) to be analyzed to investigate
whether they are caused merely by faulty sensor data or related to the actual occurrence
of cracks. Both the violin and the density plot show that the majority of cycle times range
between five to six seconds. Additionally, however, another peak at over six seconds cycle
time can be observed, yet again needing further investigation on its origin.

Apart from the distances traveled by the respective components of the press, the installed
sensors (for full overview, see chapter 2) also include strain gauges (”Dehnmessstreifen
(DMS)”) that should measure the forces applied during the DDP.

As visualized in figure [4] it was ascertained however, that the force values displayed
in the PPM remained constant throughout the entire DDP and additionally showed a
difference in forces of approximately a factor of a 100. Both observations were considered
not plausible with respect to the theory of a DDP (chapter 2)) and after discussion with
the industrial engineers on site, it was agreed on neglecting the data gathered from the
force sensors.
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Figure 4: PPM visualization of measured forces for the hold-down clamp (” Niederhalter”),
the die ("Matrize”) and the stamp (”Stempel”)

3.2 Analysis of cracks

In order to identify relevant influencing factors for the occurrence of cracks in the specified
DDP, the timely distribution of crack occurrences with a set time frame of e.g. a month
might be helpful. Not only can the total number and their timely occurrence be specified
but the average number of succeeding “broken parts” (assumed to be ranging from 1-5
at this point) can be verified. This might help identifying trends or patterns and permit
more founded assumptions on root causes for the occurrence of cracks.

3.2.1 Using E-Mail error reporting as reference for timely distribution of
crack occurrences

The first approach of quantifying the number of crack occurrences per day / month /
year and identifying possible trends, was by extracting the respective timestamp of an e-
mail error reporting from the so-called Production Performance Manager (PPM). It was
assumed that an error notification was send shortly (with a negligible delay) after the
actual crack was detected by the light detection.

After thorough investigation of the data gathered from the error reportings it was decided
to neglect them because of the following reasons:

1. Unclear timing: The error reportings do not allow a precise traceability of the time
of the crack occurrences as they are send via the PPM tool and it is unknown
whether the sending time represents also the time of the crack occurrence.

2. No reliable correlation between error reporting and crack occurrence: After checking
whether at specific times of error reportings anomalies in the gathered sensor data at
the machine tool are visible, a significant amount does not show any recorded data
at all. The only plausible explanations for lack of data is that either another tool
(not having the sensors installed) was in use at this particular time, or that error
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reportings were also send while maintenance was conducted. Both interpretations
however, lead to an uncertainty whether actual cracks are reported or not, therefore
justifying the approach of looking at the timestamps of the actual black and white
photos of the light detection cameras.

3.2.2 Using light detection camera photos for characterization of cracks and
their occurrences

The advantage of using the timestamps of the light detection photos of cracks is that for
every given timestamp the photo can be verified in order to be sure that an actual crack
occurred. Therefore, before using the timestamps of the light detection photos they were
sorted and reviewed to only include actual crack occurrences. A time shift still exists
between the time of origin of a crack in the DDP and its detection. This shift is assumed
to be equal for every crack detection and should therefore not distort the distribution of
crack occurrences. The light detection station consists of four cameras taking pictures if
a crack is detected (through a light sensor). In the following analysis only Camera 3 was
taken into account. 262 events were photographed within a time frame from May 2019
to July 2020 and were equated to crack occurrences. From the 262 events however, 83
were disregarded occurring on the 19th of November 2019 and the 23rd of January 2020
and considered as insignificant outliers due to their uncharacteristic high number of crack
occurrences in a row. Hence, 179 crack occurrences represent the baseline of the following
exploratory data analysis.

Distribution of crack
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Figure 5: Daytime distribution of crack occurrences and occurrences in direct succession
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Figure 6: Relation between machine runtime and number of crack occurrences and occur-
rences per shift)
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Figure 7: Distribution of positions of crack occurrences on sheet metal

1. Observations

e Figure 5 displays on the left side the daytime distribution of crack occurrences
from all the anomaly events of the above-mentioned time frame. In general, no
clear pattern is detectable however, peak crack occurrences at bam and 2pm
are visible, clearly in contrast to the remaining daytime hours. On the right
the crack occurrences in direct succession is visualized, counting all parts that
occurred within less than one-minute difference. Although, one minute is much
higher than the cycle time it should also take all kinds of latencies into account,
justifying this high threshold. Despite this, in average only 1.23 cracks in a
row have been detected in the stated time frame. The average cracks occur
with 5.60 hours difference in-between however, with a standard deviation of
7.44 hours.

e Figure 6 compares (on the left) the monthly distribution from March 2020 to
July 2020 of crack occurrences with the overall runtime of the machine. No
strict correlation between an increasing machine runtime and crack occurrences
is visible. Additionally, the overall runtime is significantly higher than the crack
occurrences, only occupying a very small share. Looking at the distribution of
crack occurrences per shift, all time periods show similar anomaly events, the
afternoon shift having a slight increased number of crack occurrences.

e Figure 7 makes use of the actual light detection photos corresponding to the
previously used timestamps of crack occurrences. On the right side the stan-
dard deviation of all light detection photos is visualized. The bright line in the
red box displays the detected cracks, which position with regards to the overall
sheet metal is visualized on the left. The yellow circle refers to the origin of
the cracks on one particular side. Although only one side is considered, it shall
be noted that cracks also occur on the mirrored (y-axis) of the sheet metal.
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2. Findings

e Having an even distribution over the entire stated time frame (05.19 - 07.20),
bam and 2pm seem to continuously have the highest crack occurrences. The
majority of cracks seem to occur isolated, meaning not in a row. It shall be
noted however, that the low succession rate could also partly be related to
the operator removing all succeeding bad parts, directly after the first one is
detected by the light detection (light detection and deep drawing press being
several seconds apart). The general succession time can be considered to a
great extend as random, regarding the high standard deviation stated in the
observation section.

e A slight connection between the machine runtime and the occurrence of cracks
can be suggested however, in general only no significant influence can be de-
tected, partly also due to the limited time frame of only five months (03.20-
07.20). The night shift (10pm-6am) has the least crack occurrences, followed
by the morning shift (6am-2pm) and the afternoon shift (2pm-10pm) having
the highest number of crack occurrences.

e All cracks originate from the identical starting point, being the yellow area
visualized in figure 7 (identifiable in the pictures as the brightest point), coin-
ciding with the position of the highest deformation. This corresponds directly
to the theory of the DDP (chapter 2), stating that cracks occur most likely at
positions of high deformation. The majority of cracks occur always either on
the upper left (red ellipsis) or on the right upper side (grey ellipsis), however
generally not simultaneously.

3. Assumptions

e The high crack occurrences at 5am coincide with generally the starting of the
machine according to the industrial engineer on-site, representing a possible
lead to the relevance of the temperature of the machine that can be assumed
to increase with a longer operation time and being lowest at the starting point.
As no set direct succession length of crack occurrences is detectable (most of
them being single-anomaly events) it can be assumed that the anomalies are
cause by a combination of influencing factors that occur randomly without a
clear recurring pattern.

e Crack occurrences seem not to be particular dependent on different shifts. Es-
pecially as all operators spend equal time on all three shifts (morning, afternoon
and night) no definite statement can be made on the influence the operators
might have one the occurrence of cracks. Tool-changes, maintenance or other
activities conducted during changes of shifts (morning to afternoon shift) could
have an impact on the occurrence of cracks (see highest crack occurrences at
2pm). The runtime of the machine does not seem to increase the probability
of crack occurrences, despite an intuitive thinking of “if the machine is more
used then the chance of cracks should also increase”.

e The position of the occurring cracks corresponds to the theory of the DDP,
allowing the assumption that the forming process itself is functioning normally
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and not excluding material failures as an influencing factor for the crack oc-
currence.

Characterization in one sentence: We have a continuous crack occurrence over the past
year, mainly consisting of single-anomaly events, occurring independently of the machine
time however, most frequently in a time frame from 5am to 2pm (with respective peaks
at these times). They originate always from the same sector of the metal plate.

4 Data modeling

4.1 Raw data model

The data of a set of DDPs consist of measured points of the time-dependent process
p(t) = (p1(t), p2(t), p3(t),c(t)) € R* for t € [0,T) at the times ¢, for s = 1,...,.S, where
p1(t), pa(t), ps(t) corresponds to 3 sensor data and c(t) corresponds to counting time of
each DDP.

The whole process can be divided into N small processes such that each process corre-
sponds to a single DDP. This is done by considering the starting time 7,, of the n-th DDP
until the next DDP starts, where 7y =0, 7y, =T and 7, < 7,41 foralln =1,...) N.

Hence, the n-th DDP is described by p(t) for ¢t € [r,, 7,+1) and its measuring times are
ts for s = op,...,0n41 — 1, where o, is the first s for which t; > 7, i.e. 0, = min{s €
{1,...,N} | ts > 7.}

The description of the DDPs can be simplified by defining the n-th DDP by p(™(t) =

p(t + 1,) for t € [0,T,,) where T,, = 7,41 — 7, and its measuring times are )

for s =1,..., 5, where S,, = 0,11 — 0,.

- ts—i-an -1

In total, our model results in:

Model 1 The n-th DDP is modeled by a time-dependent three-dimensional process
s

P (t) = ( ™y, o (1), pS (1), ™ (t)) € Rifort € [0,T,). The collected data (p(”)(tgn))> !

s=1
consist of the measurements of the DDP p(™ at the times tgn) for s =1,...,.5,.

Generally, tgm) =+ tg") for m # n and hence the "n-dependence” of the measuring time is
needed. Also T, # T,, for m # n does not hold in general since the total time of a DDP
can vary.

4.2 Data preparation

The goal of data preparation is to provide well-structured data for further analysis.

Due to network delay and limit of the microprocessor, some data do not arrive at the
expected time. By looking at the raw data, there are three types of points needed to be
dealt with: some data come in the wrong order; some data are measured with wrong time
step; some data are missing. Besides, it is not necessary to include all data during the
DDP, meaning some transformation can help reduce the size. Finally, since there is no
correct label (cracked or not) provided for each DDP, we need to do it manually.
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4.2.1 Identify DDPs

Motivation: Identifying each DDP in raw data is crucial for further analysis. Also,
labeling is done for each DDP. However, the raw data does not contain any identifier for
each independent DDP. We have to do it manually.

Approach: As is designed, cycle time is reset to 0 when n-th DDP is finished, after
which there’s a period of time when nothing happens. During this period cycle time is
set to 0. When (n+1)-th DDP begins, cycle time starts to count again. Figure [8] shows
the result of dividing a series where red dash lines are separators.

Raw Data Example
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Figure 8: Divide data and identify DDPs

Based on this behaviour, the following conditions are important to identify DPPs:

1. cycle time at separator is non-zero and it is relatively small;

2. cycle time at the time before separator is zero;

3. before these cycle time of zero values, there is cycle time of relatively large value;

4. using separator, we cut the whole series and get a set of sub-series, where each element
is an independent DDP;

5. assign each DDP to an unique identifier, e.g. incremental integer.

Formally, in order to identify each DDP, it is necessary to determine 7, for all n. Let
Aqc(t;) = c(tiyr) — c(ti), Doc(t;) = c(tiy1) — c(tj=)), where j*(i) = max;;{j | c(t;) # 0}.
Let A, B> 0and I[(A,B) ={k e {l,....5} | Arc(ty) > A, c(tp_1) =0, Asc(ty) < —B}.
W.lo.g. we assume k; < ky < --- < kjj for k; € I. Then, by definition, we know ¢, is
the starting point of n-th DDP, thus, 7, = ty, .
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4.2.2 Reordering

Ideally, for nth-DDP, we have c(”)(tgn)) < )(t§ +)1) meaning cycle time ™ (t™) is
monotonously increasing. However, due to network delay and hardware limit, some data
points come in wrong order, i.e. Jig, s.t. ™ (¢ (n)) > c(")( i +1) We first have to decide
) (tl(g)) actually belongs to which DDP. It belongs to (n-1)th DDP if data of tl(o comes
very late. It also possibly belongs to n-th DDP if the data before time tg:) come late after

this time. Once it is determined, we can simply reorder data by cycle time for each DDP.

Thus, given a time t;, when cycle time is in wrong order, the following route is designed:
Reordering Algorithm

1. find the nearest time t;, before t;,, s.t. ¢(t;,) is close to c(t;,) ;

2. find the nearest time t;, after t;,, s.t. ¢(t;,) is close to c(ts,) ;

3. choose the time closer to t;, and assign the DDP identifier of it to ¢;,;

4. Once all DDP identifiers are modified, we reorder by cycle time for each DDP.

In practice t;, is very close to ¢;, or t;,. But for ¢;, that is almost equally close to both ¢;,
and t;,, it can not be decided confidently, thus we delete it. Figure [9] shows two examples
that needs reordering.

Cycle Time of n-th DDP Cycle Time of n-th DDP
|
6000 H +  points of n-th DDP
i |
400 « points of n-th DDP H points of {n-1)-th DOP
5000 t
1
1
o u
£ 300 £ 4000 !
= = |
& L 3000 i
3 200 g |
2000 4
1
1
100 1000 i o er—
. - oo
o 5 1 15 0 0 110 20 3 4 s 6 70 8
Time Step Time Step

Figure 9: Examples of reordering points
(n)
10+)
(n) s - (m)y) "

t;,” is in wrong order. For n-th DDP (p(”) (ts )) g

)} > max{c™ (7)), et}
we add a point (O, 0,0, ¢ )(tfqn)ﬂ))
where 57, | = ¢4 410 ms and ™ (¢4, ) = 10010 ms, indicating the end of this DDP
as cycle time is always less than 10000. Then, we map t,(;:) back to ¢, (global time before
separation into DDPs) and let my(a) = max{l € {1,...,a} | c(t;i—1) < c(ta) < c(tiyr)},

my(a) = min{r € {a,...,S} | c(t,—1) < ¢(ty) < c(tr41)}, let the function DDP_ID(k)
output the DDP identifier of ¢, thus

Formally, if 3 n,ig,p > 0, s.t. minj_g,__,{c™(¢

DDP_ID(m,(a)) if [ta = tm)| > 3lta = tm, ()]
DDP_ID(a) = < DDP_ID(my(a)) if |ta — tm. ()] > 3|ta = tm, ()|
drop data at a else

Once it is done, we delete all points whose cycle time equal to 10010 since they are added
manually by algorithm.
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4.2.3 Uniform steps and impute data

As is designed, the time interval between two measurements is fixed as 20 ms. Once
a DDP process starts, data should be measured every 20 ms. However, in real cases,
intervals of a small part of data vary differently due to reasons like microprocessor crash.
Some intervals are even larger than 40 ms, meaning there’s a measurement missing. To
make sure that time steps of data are uniform, we have to manually create some data.
Here we choose linear interpolation to do imputation because most parts of the curve are
like a line for a single DDP.

Data Imputation - Linear interpolation

e rawdata
after imputation
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o
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- = -
= = =
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>
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Figure 10: Example of data imputation

Formally: let Acy = 20 ms be the standard time interval. Construct a new series of time
for the n-th DDP {t;(n)}fgl, where t;(n) =t 4 Acy(i — 1), thus c(t;(n)) = MM +
Acy(i — 1) For all i, if # 7, s.t. t&n) = ¢ imputation for ™ is needed.
Linear interpolation | | for £™: given i, let ji(i) = max{j € {0,....i} | tg-") <
£}, j3()) = min{j € {i,..., S} | 7" > £}

Pt — o™ ()

oy oy _ P )
P = . .
cm (#) — cm ()

2

(C(n) (tl-(n)) _ (t(g))) + p(n) (tﬁ:))

i J

4.2.4 Data transformation

By looking at the data, we find that the duration, as well as the starting point of each
DDP, is different. Moreover, the cycle time when the main part of DDP takes place is
also not fixed. Practically, each DDP takes for nearly 7 seconds. But the primary part
of a DDP takes place after the matrix part touches the hold-down part of the machine
and before these 2 parts leave each other. Specifically, we can select the period when the
distance of the die is less than 165 mm as figure [11] shows.

Formally, n-th DDP becomes (p(”) (t;("))yn , where py (£ < 165, Vi € [pn, ¢u. There-

7

fore, all DDPs have the same meaningful st_arnting and ending point. But it still leaves the
problem that the length of each DDP is different.
4.2.5 Labeling

Our goal of labeling is to assign each DDP a class 0/1, representing it’s a cracked DDP
or not, i.e. set the class ¥, of n-th DDP:
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Figure 11: Primary part of a DDP(between red dash lines)

However, we only get the timestamps when cracks were detected. There are stations in
the factory to detect cracks, from which we get failure reports. As is measured by the
factory, it exactly takes 58 seconds for a metal plate to be transferred from the machine
to the test station. Therefore we have the following route to label:

Let the function M : t — n map an arbitrary time ¢ to the identifier n of the corresponding
DDP. Let {a;} X1 be a set of timestamps when cracks are detected. The set of identifiers
of cracked DDPs is thus {M(a; — AT)}Yereek where AT = 58 4+ 6 = 64 s.

4.3 Analysis for data of cracks

In practice, only 5 cracked DDPs are found in collected data from 1st May to 15 July
2020. Factory also manually produced 8 cracked metal plate for us, resulting in 13 cracked
DDPs in total. Usually, in an imbalanced scenario, some data augmentation algorithms
are helpful. However, it is almost impossible in this project because the mechanical
reasons for producing cracks are unknown so that we cannot ensure that a small change
in data still keeps the original class of a DDP. So we focus on those cracked DDPs.

Comparison of cracked and non-cracked curves: Similarity: 86.6%

Distance: die Distance: upper punch Distance: hold-down

267.5
2650

- 176
\

Vs

— non-cracked cycle

—— non-cracked cycle I 120
cracked cycle

\ — non-cracked cycle
cracked cycle

174 cracked cycle

2625

E 2600

£

2575

& 5.0
525
50,0
215

4.3.1 Similarity comparison

e

N /

E
E

1o

£ 105
@

£ 100

©

%5

90
8

15 LN
\

g1

g 170

S 168

g

2 166

3
164
162

1
. f
A J
N
N,
Y ————
40 B0

time step

80

time step

Figure 12: Similarity comparison

To get insights of cracked DDPs, we compared similarities of data between cracked and

non-cracked DDPs.

Here we use Gaussian radial basis function kernel sim(z,z’)

exp(—y - ||z — 2'||?). Since the length of each DDP is not equal, we are not able to

use distances requiring fixed size. Therefore, we use Dynamic Time Wrap |

| to
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calculate distances, making similarity sim(z,z’) = exp(—y - dtw(z,2')?), where we set
~ = 0.006.

Spectral Embedding of DDPs in 2D
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Figure 13: Spectral Embedding of DDPs in 2D

Figure [12] shows the similarities between a randomly sampled cracked DDP and 2 DDPs
selected from 500 randomly sampled non-cracked DDPs. The DDPs in the diagram have
a similarity of 86.6 %. and the shapes almost overlap. We cannot even make sure if the
difference results from noise because at every point the difference is very tiny.

In fact, there are 5 % of DDPs with similarities larger than 86.6 % in the 500 sampled
DDPs, meaning a large proportion of non-cracked DDPs are highly similar to cracked
ones. Figure [13] shows the spectral embedding results where DDPs are transformed into
2D points. There are many normal points near cracked ones and the overall distribution
of cracked points seems random.

Next, We try to see if cracked DDPs tend to "gather” in some particular patterns. There-
fore we did spectral clustering for different number of clusters. Then we compare the
proportion of cracked and normal DDPs over different clusters for each clustering. Figure
[14] shows the comparison of 2, 3, 4, 6 clusters. Despite some fluctuations, the distri-
butions look very similar. Based on this fact, it is difficult to apply an algorithm to
distinguish cracked and non-cracked DDPs.

Distribution of cracked vs nomal DDPs over clusters
2 Clusters 3 Clusters 4 Clusters 6 Clusters

. Overall m Overall . Overall
e Cracked | mm Cracked | o e Cracked

Cluster Cluster Cluster Cluster

Figure 14: Proportions of cracked vs non-cracked DDPs over clusters
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5 Conclusion and outlook

In the following, the conclusion of the TUM Data Innovation Project at BSH is discussed.
In particular, the most important findings are addressed and possible recommendations
for action are also discussed. These findings are divided into three areas.

We start with the findings of the FMEA. It is important to note that the failure conse-
quences always follow the same pattern. Thus, the change in movement required in the
DDP is greater than the flow speed of the alloy. This discrepancy then leads to crack for-
mation in the metal. The failure causes for this are very variable and cannot be narrowed
down on the basis of the available data. For the further technical production investiga-
tion, the failure tree as well as the process activity table is a value-adding instrument.
For example, it is important to know that the last part of the graph should contain the
crack behaviour, as this is where the actual DDP takes place. It should be noted that the
definition was established to the best current knowledge. For the causes with the highest
risk priority number, recommendations for action are given in the following. Metal plate
properties must be recorded in order to be able to make statements about the metal
properties (e.g. material thickness). In addition, the coating properties must be recorded
so that, for example, statements can be made about the distribution of the oil film on the
sheet metal or the coating itself. Possibly suitable sensors are the measuring systems of
MeSys GmbH, because they allow a continuous data acquisition in a u-meter range. The
additional findings can be obtained from the FMEA.

The second important area of discovery is data acquisition. The project team concludes
from the findings of the entire report that the currently collected data is not suitable for
the detection of cracks. The installed strain gauges record data that cannot be inter-
preted mechanically. For the displacement measurement using the ultrasonic sensors, it
is assumed that the mass of the tools absorbs the vibrations caused by the crack. For
this purpose, it is recommended to carry out impact tests and to see whether data can
be recorded. The measured values obtained by the Bosch XDK sensor only capture very
large influencing factors, but the relevant data is not currently being collected. It is rec-
ommended to track the individual components and assign the recorded values to a unique
product ID.

The third part is about data. We still think the data of cracks are not enough for analysis.
So far we were only provided with data of five “natural” cracks and eight “artificially
induced” (manually) cracks. It is hard to get a significant mathematical conclusion with
only 13 cases. The lack of data may result from the fact that only one tool-set is used to
collect data. Therefore, in order to get more data, more tool-sets could be equipped with
sensors. Though the method we use for labelling seems to work, there are still concerns
about the correctness of time shifts from machine to test station. For example metal
plates may stop for a while, making it very hard to find the correpsonding DDP in the
data.
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