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Figure 12.10 = lllustrative load curves by sector for a weekday in

February in the European Union compared with the
observed load curve by ENTSO-E in 2014
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Figure 12.10 = lllustrative load curves by sector for a weekday in

February in the European Union compared with the 'I'u'l'l
observed load curve by ENTSO-E in 2014

Agriculture and transport

HPLW for BMW;

January 2017":

07:30 a.m. - 09:00 a.m. and
05:00 p.m. - 19:30 p.m.

DHochlastzeitfenster fiir 2017 nach § 19 Abs. 2
Satz 1 StromNEV

Source: International Energy Agency: 6
World Energy Outlook 2016



Motivation: High Peak Load Windows

To be able to profit from cost reduction, several conditions have to be fulfilled.
For BMW?" one is:

highest electricity demand of highest electricity demand of
the year within a HPLW < O 9 X the year outside the HPLW.

DHochlastzeitfenster fiir 2016 nach § 19 Abs. 2 Satz 1 StromNEV
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Milestones
1. Statistical exploration of energy data and outlier correction
2. Detection of relevant features to explain and forecast the energy profile
3. Using machine learning methods for data exploration and developing prospective improvements
4. Documentation of project
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Dingolfing Production Plant

e BMW Group’s largest vehicle production site in Europe
e 1,600 BMW vehicles every day.

e models of the 3 to 7 Series

e components for BMW'’s electric vehicles

e car bodies for Rolls-Royce Motor Cars

e the operation is spread over different production halls
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https://www.bmwgroup-werke.com/dingolfing/en.html

press.bmwgroup.com
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Internal energy
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Energy Data: Exploratory Data Analysis

The energy data is a large time series data set consisting of:

e energy data from the whole plant

e incomplete: sum of elements is not equal to the total

e aggregated by 15 minute consumption values

e no production data

e mainly coming from measuring devices which can be
subject to recording errors

e there are common identifiable measurement errors

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant
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Energy Data

Comparison between energy profiles at different stations of the plant, featuring shifts, weekends and

occasional energy peaks.

MS-13

31

Jar

1200

2000
1500

0 Q
= ™~
& -
c e
I o

-
.

Ecom._ Jo Reg

1000

=) =]
=1 =1
=) =)

Jan 24
an 171

E:o@ jo Re@

1000

m
|
|
—

Jan10+]
Jan 3+
2016

400

=]
=]
5

Jan10-]

23:30:00
23:00:00
22:30:00
22:00:00
21:30:00
21:00:00
20:30:00
20:00:00
19:30:00
19:00:00
18:30:00
18:00:00
17:30:00
17:00:00
16:30:00
16:00:00
15:30:00
15:00:00
14:30:00
14:00:00
13:30:00
12:00:00 3=
12:30:00 ©
12:00:00 6
11:30:00 ¥
11:00:00 w
10:30:00
10:00:00
09:30:00
09:00:00
08:30:00
08:00:00
07:30:00
07:00:00
06:30:00
06:00:00
05:30:00
05:00:00
04:30:00
04:00:00
02:30:00
03:00:00
02:30:00
02:00:00
01:30:00
01:00:00
00:30:00
00:00:00

14

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant



TUm
Energy Data: Outlier Detection and Missed Data

Types of wrong measurements in the energy data:

1. Missed data

Your theory is wrong!

1.1. missed values

1.2. “fake” zero consumption

2. Too long/too short measurements

3. “Wrong” outliers

b _:e_gf%i ‘:*r:r'ﬁ‘;
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Energy Data: Missed Data
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Method:

Several consecutive zeros or -1
during the production time were
replaced with the mean of the day.

Single zeros or -1 during the

production time were replaced with
the mean of neighbouring values.
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TUT

Energy Data: Too long/too short Measurements

Too long/ too short measurement example
MS-13, Feb 9, 2016
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Feb 09 18:00

S

Feb 10 00:00

Detection:

Too long — 3 std above the Moving

Average
Too short — 3 std. below the
Moving Average

== MAR

—# Mean - 4 sd
Mean + 4 sd

=&= WERT

Method:
Were replaced with their average
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Energy Data: Wrong Outliers Ll

Detection: Method:

Running Standard Deviation Were replaced with mean of neighbouring values
Lower bound: 99" Percentile
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Production Data: Exploratory Data Analysis

The data set contains information about production together with energy. It
mainly is:

e data from car body assembly only

e nodes are processing units

e cars come in and come out, energy is measured
e timestamps are very precise, to milliseconds

e incompatible with energy data

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant
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TUT

Production Data: Preprocessing

Preprocessing of production data consisted of: Distribution of energy consumption for nodes
e Robust outlier detection oo
o Median Average Deviation (MAD) J—"* el l-—'- L—J—LJ—-—-
o Energy distributions are determined | = I e s | - I -

by node

e Accumulating in 15 minute time frames o L ‘ | ;‘ZZZL %Eééh ol S I el
o Make it compatible with energy data

o  Shorter table, minimum information " 3‘53§I. iiig( ' 2533‘ 2333J.‘_

o;
0 02 04 06 08 1 © 5 10 o 5 10 15 20 0 10 20

loss
Fig #. Data from each node can be interpreted as a sample from a

different populations.
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Production Data: Linear Regression Model

Used features:

number of car passed through the node

lags of the target variable (96)

day of week coded by means of the day/hour
weekend or not

information about shifts and ramp-ups

car model

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant 22



Production Data: Linear Regression Model

Time series Cross-Validation

Train Test |

Train | Test

Train Test

Train

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant

Test
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Production Data: Linear Regression Model

83 nodes have MAE <1 kWh!

I — prediction
MAE =0.34 kWh — actual

i i i i i
0 500 1000 1500 2000 2500 3000
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Production Data: Linear Regression Model

MAE = 5.0 kWh MAE = 6.0 kWh

without number of processed cars with number of processed cars
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The Other 6 Nodes

e Understand what is happening in these nodes
e Energy consumption independent of units

e Nights

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant

https://www.flickr.com/photos/pasma/485201047
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The Dryer in the Body Shop

e Highest energy consumption

35

30

e 98 days, 32 timestamps

20 25

10

e To detect patterns

Energy consumption in 15 mins
15

a

0

e To gain information within a cluster

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant

Night Shifts Plot for Dryer

01:00 03:00

Time Stamp from 22:00 to 0545
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Time Series Clustering

e 32 dimensional points in space vs. a curve with 32 observations

e How does Time Series Clustering work?
1. Compute a dissimilarity matrix
2. Sort out the observations

3. Hierarchical Clustering

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant
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Dissimilarity Methods

1. Correlation: Based on the estimated Pearson’s

Cluster Dendogram using Frechet Distance

correlation of two given time series

35

25

2. Frechet Distance: The infimum of maximum

15

Height
5

distances between two curves

0

3. Dynamic Time Warping: Optimal match between

time series regardless of their acceleration D2

helust (*, "complete")
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Clusters
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LOGISTICS RE LATED DATA
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Logistics Related Data: Basic Statistics.

Logistic system data: Tracking unique cars at different production stations in the paint shop.

Measurements Unique Cars Colours
~ 370,000 ~ 50,000 ~100
Body specification Production stations Time Period
(Variante) (Zaehlpunkt)
~ 1,000 36 ~ 6 Month

Not complete production data;
only extract
TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant 32



Logistics Related Data: 1. Basic Statistics.

Other colors BLACK SAPPHIRE
14% METALLIC
20%

GLACIERSILBER
METALLIC
3%
SCHWARZ 2 _
4%
MINERALGRAU
METALLIC '
4%
IMPERIALBLAU ALPINWEISS 3
BRILLANTEFFEKT 15%
METALLIC
5%
SOPHISTOGRAU CARBONSCHWARZ
BRILLANTEFFEKT METALLIC / METALLIC
e ~ BLUESTONE o
METALLIC
8%

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant

TUT

For 85% of the cars just
10 different colours are
used.

For 2% of the cars we
don’t know which colour
is used.
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Logistics Related Data: 2. Boxplot.

Distribution of Time Difference of most used Mixes at station 22080
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668 2079885
AB9 2079373
A0 2062413
AS0 2973884
A90 2979885
A0 2979886
AQE 2062413
ASE 2973373
AQE 2973878
B39 2919419
B39 2919420
C2Y 2962413
C2Y 2979881

TR P

Mix =
Combination of color
and variant
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Logistics Related Data: Graphs.

® 73001
Production flow of cars with color Atlantic Cedar Metallic.
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Data without December 2017.
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Logistics Related Data: Regression Analysis

* Motivation:

> Detection of correlations between features (color, car type) and energy consumption
> Quick and flexible implementation

* Benchmark model: Linear Regression
> No perfect linear correlation expected
> But even other correlations (logarithmic, exponential, etc.) would be visible in slope

 Results:

> Highly significant: Average Energy Consumption of previous day, Number of Working Steps
> Significant: Color, Car Type, Number of Color/Car Type changes, Temperature, Wind Speed
> Unclear: Radiation

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant
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Regression Analysis

* Prediction

Prediction

EnergyUse =, +B, Col, +... +B,,Col  +
+B, Car, + ... +B, Car +B,, WS +f3,, ColC +

B,,CarC

Error

112.3 7.8%

EnergyUse = 8, +B, AverageEnergy

previousDay

+B, WS

92.5 6.5%

- WS: Number of working steps per interval
-  ColC: Number of color changes per interval
—  CarC: Number of car changes per interval

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant
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Color Clustering

« Motivation
> Statistical significance of number of color changes
> Goal: Find Clusters of frequent color combinations

* Method
> K-Means: Popular approach, only for numerical values
> K-Mode: K-Means extended by categorical values
— each color forms own cluster

* Reason
> Colors painted in sequence
— Painting process already optimized with regards to color

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant
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Color Clustering

Distribution Color 1 Distribution Color 2
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Conclusion

Results
e Feature detection & electricity demand prediction
e Analyzing energy saving potential: ramp-ups
e Painting sequence: small room for improvement
e Visualization of production flow

Outlook
e Include data from the second MS connected to the paint shop into the analysis

e Experiment with neural network architectures
e Compare paint shop in Dingolfing with paint shops elsewhere (e.g. Regensburg, Leipzig)
e Consider other forms of energy consumption (water, heating, cooling)

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant
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Learning Outcomes

e Energy market and management at a company and in
Germany

e Understand the data > Preprocess the data > Build
models around the data > Interpret results

e Repurposing data can pose a challenge

e Balance coordination and manpower

e The value of diverse teams

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant

https://www.flickr.com/photos/68751915@N05/6869764745
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Thank you!

Sources:
Project related materials from 2016/2017

Energy Data

Logistics Related Data

Production Data

Energy Data Overview

Hochlastzeitfenster flir 2016/2017 nach

§ 19 Abs. 2 Satz 1 StromNEV

Overview measurement points
https://www.bmwgroup-werke.com/dingolfing/en.html

For this presentation:

press.bmwgroup.com

International Energy Agency: World Energy Outlook 2016
www.ag-energiebilanzen.de 2016 preliminary figures
flickr.com




