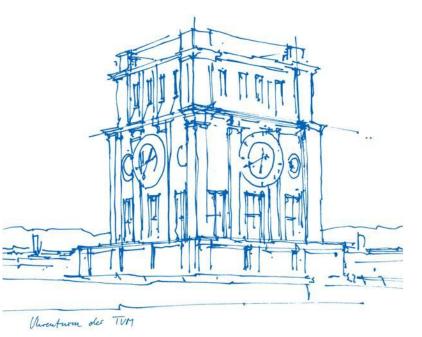


TUM Data Innovation Lab Energy Peak Load Prediction in a BMW Plant

M. Herrmann, P. Labintceva, D. Simancas Mateus,

F. Vogeltanz, B. Yazganoglu

Technical University Munich Department of Mathematics Munich, February 17th 2018



Agenda

- 1. Introduction to the project
- 2. Dingolfing Production Plant
- 3. Energy Data
- 4. Production Data
- 5. Logistics Related Data
- 6. Conclusion

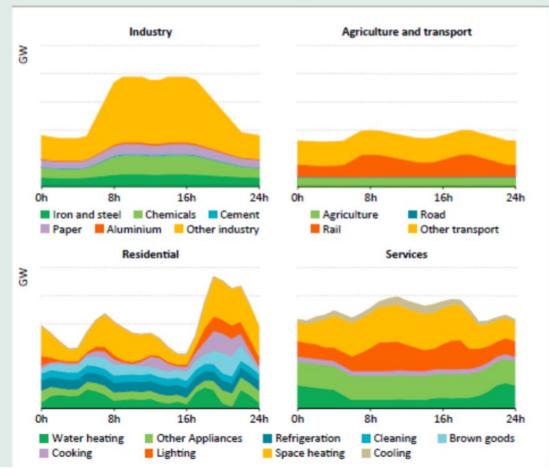
Agenda

- 1. Introduction to the project
- 2. Dingolfing Production Plant
- 3. Energy Data
- 4. Production Data
- 5. Logistics Related Data
- 6. Conclusion

Agenda

- 1. Introduction to the project
- 2. Dingolfing Production Plant
- 3. Energy Data
- 4. Production Data
- 5. Logistics Related Data
- 6. Conclusion

Figure 12.10 Illustrative load curves by sector for a weekday in February in the European Union compared with the observed load curve by ENTSO-E in 2014



ТШ

Source: International Energy Agency: World Energy Outlook 2016

Figure 12.10 Illustrative load curves by sector for a weekday in February in the European Union compared with the observed load curve by ENTSO-E in 2014

HPLW for BMW; January 2017¹): 07:30 a.m. - 09:00 a.m. and 05:00 p.m. - 19:30 p.m.

> ¹⁾Hochlastzeitfenster für 2017 nach § 19 Abs. 2 Satz 1 StromNEV Source: International Energy Agency: 6 World Energy Outlook 2016

ТΠ

Motivation: High Peak Load Windows

To be able to profit from cost reduction, several conditions have to be fulfilled. For BMW¹⁾ one is:

highest electricity demand of the year within a HPLW

¹⁾Hochlastzeitfenster für 2016 nach § 19 Abs. 2 Satz 1 StromNEV

Milestones

- 1. Statistical exploration of energy data and outlier correction
- 2. Detection of relevant features to explain and forecast the energy profile
- 3. Using machine learning methods for data exploration and developing prospective improvements
- 4. Documentation of project

Dingolfing Production Plant

- BMW Group's largest vehicle production site in Europe
- 1,600 BMW vehicles every day.
- models of the 3 to 7 Series
- components for BMW's electric vehicles
- car bodies for Rolls-Royce Motor Cars
- the operation is spread over **different production halls**

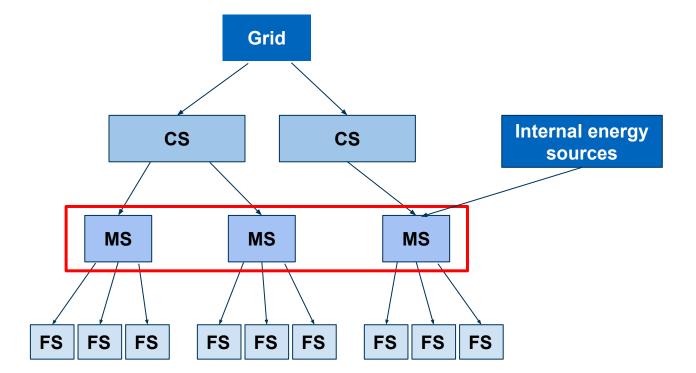
https://www.bmwgroup-werke.com/dingolfing/en.html

TUM DI-LAB | Energy Peak Load Prediction in a BMW Plant

press.bmwgroup.com

ENERGY DATA

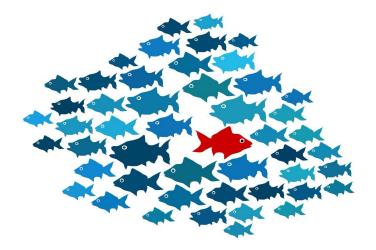
Energy Flow



Energy Data: Exploratory Data Analysis

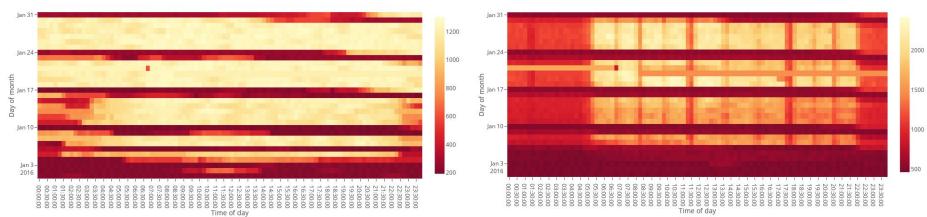
The energy data is a large time series data set consisting of:

- energy data from the whole plant
- incomplete: sum of elements is not equal to the total
- aggregated by 15 minute consumption values
- no production data
- mainly coming from measuring devices which can be subject to recording errors
- there are common identifiable measurement errors



Energy Data: Visualization

Comparison between energy profiles at different stations of the plant, featuring **shifts**, **weekends** and occasional **energy peaks**.



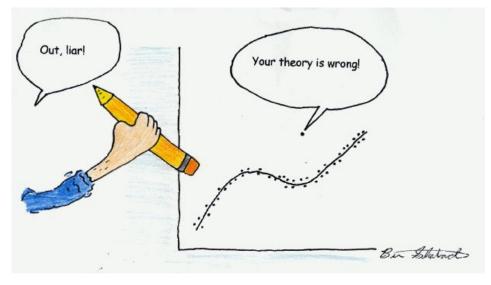
MS-13

MS-4

Energy Data: Outlier Detection and Missed Data

Types of wrong measurements in the energy data:

- 1. Missed data
 - 1.1. missed values
 - 1.2. "fake" zero consumption
- 2. Too long/too short measurements
- 3. "Wrong" outliers



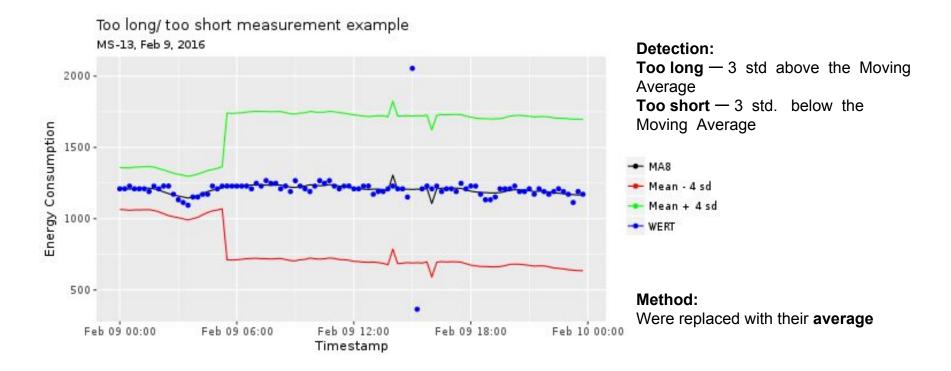
Energy Data: Missed Data

Method:

Several consecutive zeros or -1 during the production time were replaced with the **mean of the day**.

Single zeros or -1 during the production time were replaced with the **mean of neighbouring values**.

Energy Data: Too long/too short Measurements



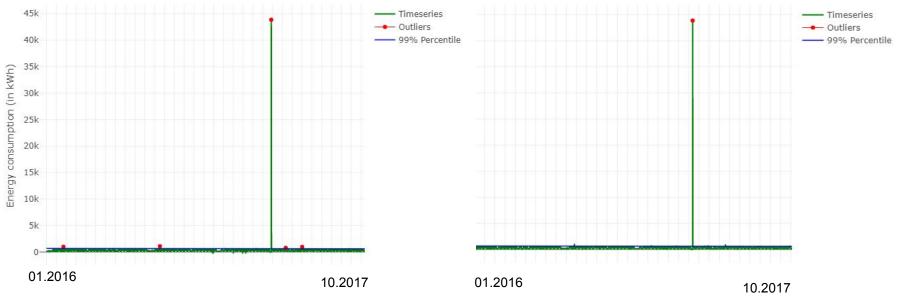
Energy Data: Wrong Outliers

Detection:

Running Standard Deviation Lower bound: 99th Percentile

Method:

Were replaced with mean of neighbouring values



ТΠ

Production Data: Exploratory Data Analysis

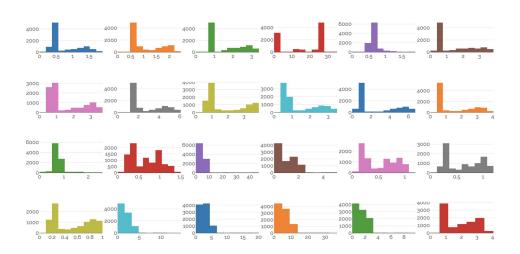
The data set contains information about **production** together with **energy**. It mainly is:

- data from car body assembly only
- nodes are processing units
- cars come in and come out, energy is measured
- timestamps are *very* precise, to milliseconds
- incompatible with energy data

Production Data: Preprocessing

Preprocessing of production data consisted of:

- Robust outlier detection
 - Median Average Deviation (MAD)
 - Energy distributions are determined
 by node
- Accumulating in 15 minute time frames
 - Make it compatible with energy data
 - Shorter table, minimum information loss



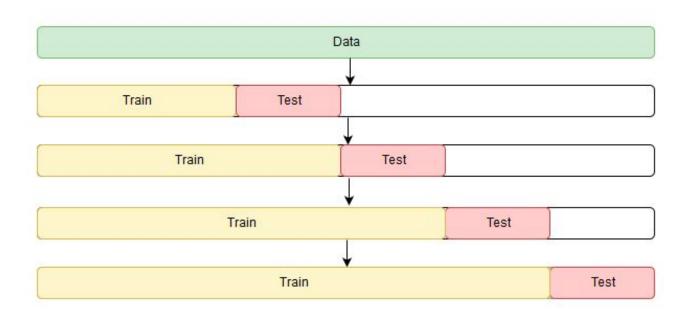
Distribution of energy consumption for nodes

Fig #. Data from each node can be interpreted as a sample from a different populations.

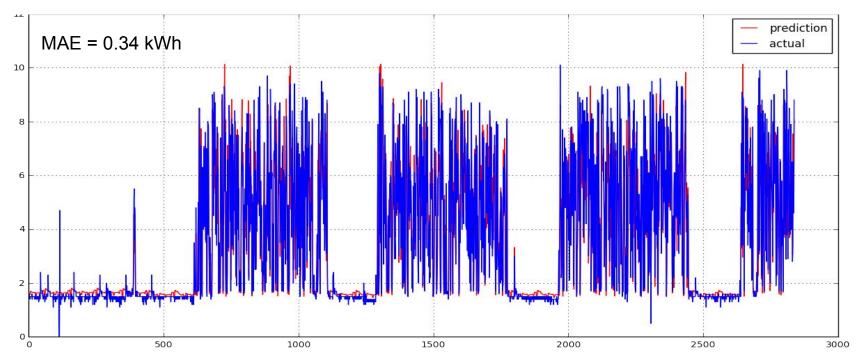
Used features:

- number of car passed through the node
- lags of the target variable (96)
- day of week coded by means of the day/hour
- weekend or not
- information about shifts and ramp-ups
- car model

Time series Cross-Validation



83 nodes have MAE < 1 kWh!

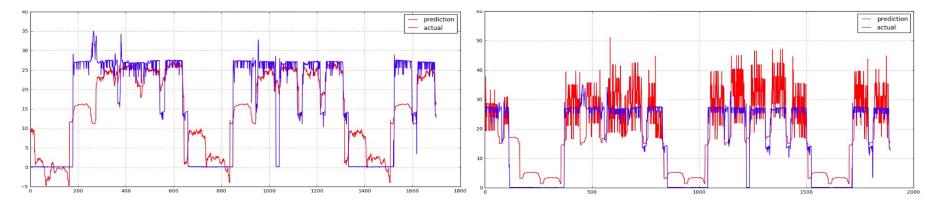


MAE ≈ 5.0 kWh

without number of processed cars

MAE ≈ 6.0 kWh

with number of processed cars



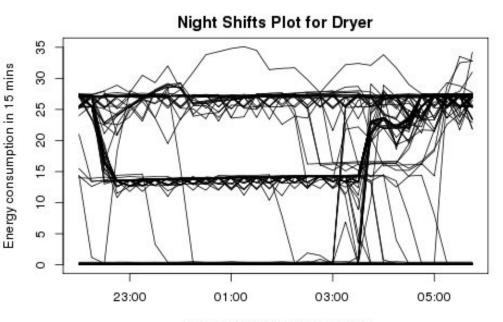
The Other 6 Nodes

- Understand what is happening in these nodes
- Energy consumption independent of units
- Nights

The Dryer in the Body Shop

- Highest energy consumption
- 98 days, 32 timestamps

- To detect patterns
- To gain information within a cluster



Time Stamp from 22:00 to 05:45

Time Series Clustering

- 32 dimensional points in space vs. a curve with 32 observations
- How does Time Series Clustering work?
 - 1. Compute a dissimilarity matrix
 - 2. Sort out the observations
 - 3. Hierarchical Clustering

Dissimilarity Methods

1. Correlation: Based on the estimated Pearson's

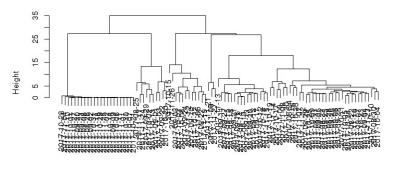
correlation of two given time series

2. Frechet Distance: The infimum of maximum

distances between two curves

3. Dynamic Time Warping: Optimal match between

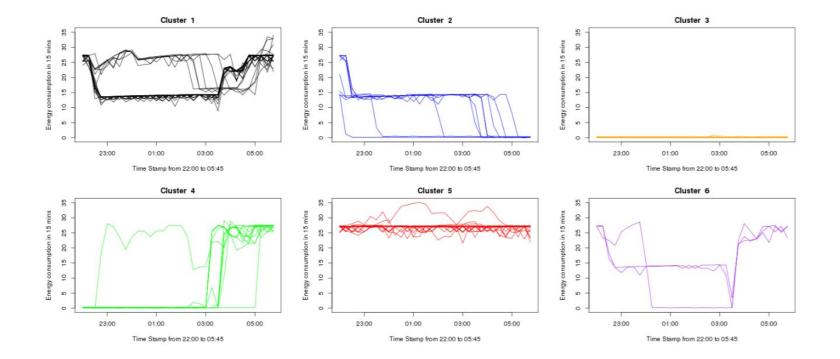
time series regardless of their acceleration



Cluster Dendogram using Frechet Distance

D2 hclust (*, "complete")

Clusters



LOGISTICS RELATED DATA

14440

press.bmwgroup.com

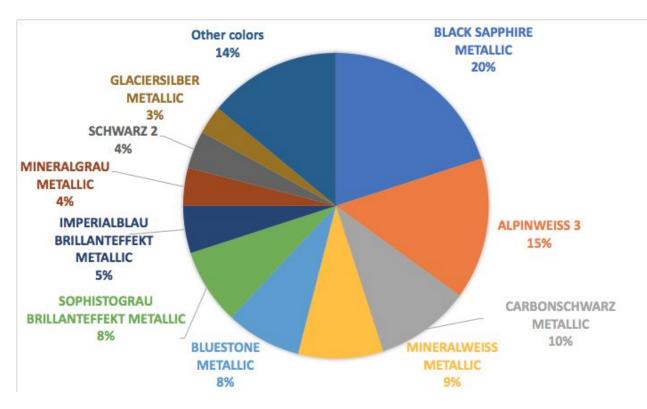
Logistics Related Data: Basic Statistics.

Logistic system data: Tracking unique cars at different production stations in the paint shop.

Measurements	Unique Cars	Colours	
~ 370,000	~ 50,000	~ 100	
Body specification (Variante)	Production stations (Zaehlpunkt)	Time Period	
~ 1,000	36	~ 6 Month	

Not complete production data; only extract

Logistics Related Data: 1. Basic Statistics.

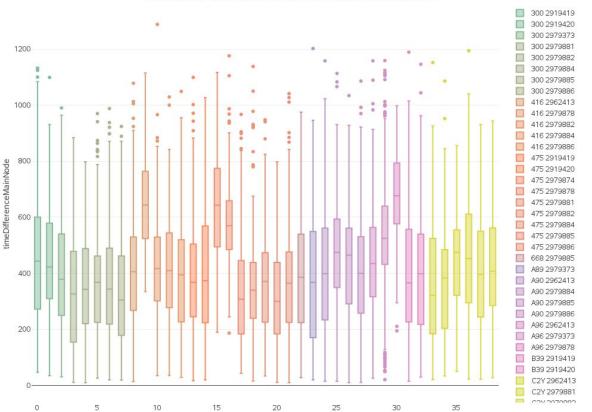


For 85% of the cars just 10 different colours are used.

For 2% of the cars we don't know which colour is used.

Logistics Related Data: 2. Boxplot.

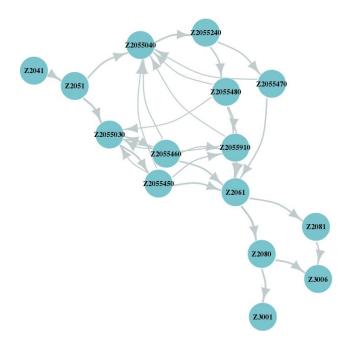
Distribution of Time Difference of most used Mixes at station Z2080

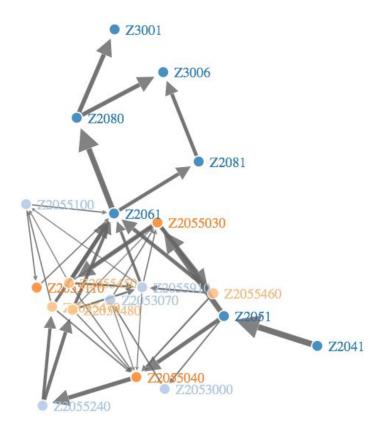


Mix = Combination of color and variant

Logistics Related Data: Graphs.

Production flow of cars with color Atlantic Cedar Metallic.





ТЛП

Logistics Related Data: Regression Analysis

- Motivation:
 - > Detection of correlations between features (color, car type) and energy consumption
 - > Quick and flexible implementation
- Benchmark model: Linear Regression
 - > No perfect linear correlation expected
 - > But even other correlations (logarithmic, exponential, etc.) would be visible in slope
- Results:
 - > Highly significant: Average Energy Consumption of previous day, Number of Working Steps
 - Significant: Color, Car Type, Number of Color/Car Type changes, Temperature, Wind Speed
 - Unclear: Radiation

Regression Analysis

• Prediction

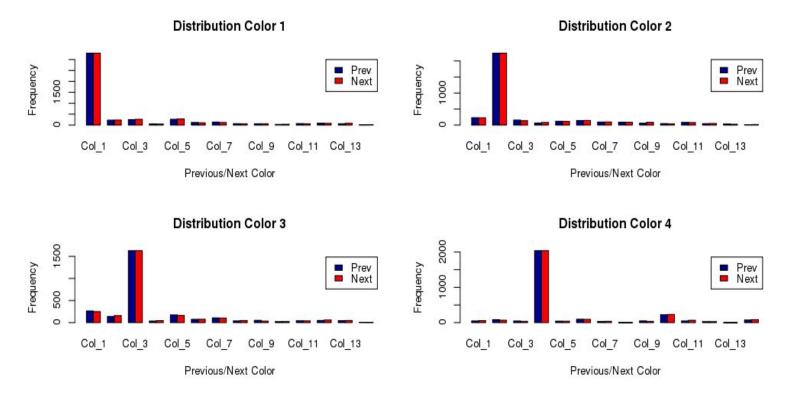
Model	RMSD (in kWh)	Prediction Error
EnergyUse = $\beta_0 + \beta_1 \text{Col}_1 + + \beta_{14} \text{Col}_{14} + \beta_{15} \text{Car}_1 + + \beta_{31} \text{Car}_{17} + \beta_{32} \text{WS} + \beta_{33} \text{ColC} + \beta_{34} \text{CarC}$	112.3	7.8%
EnergyUse = $\beta_0 + \beta_1$ AverageEnergy _{previousDay} + β_2 WS	92.5	6.5%

- WS: Number of working steps per interval
- ColC: Number of color changes per interval
- CarC: Number of car changes per interval

Color Clustering

- Motivation
 - Statistical significance of number of color changes
 - > Goal: Find Clusters of frequent color combinations
- Method
 - ➤ K-Means: Popular approach, only for numerical values
 - ➤ K-Mode: K-Means extended by categorical values
 - \rightarrow each color forms own cluster
- Reason
 - > Colors painted in sequence
 - \rightarrow Painting process already optimized with regards to color

Color Clustering



Conclusion

Results

- Feature detection & electricity demand prediction
- Analyzing energy saving potential: ramp-ups
- Painting sequence: small room for improvement
- Visualization of production flow

Outlook

- Include data from the second MS connected to the paint shop into the analysis
- Experiment with neural network architectures
- Compare paint shop in Dingolfing with paint shops elsewhere (e.g. Regensburg, Leipzig)
- Consider other forms of energy consumption (water, heating, cooling)

Learning Outcomes

- Energy market and management at a company and in Germany
- Understand the data > Preprocess the data > Build models around the data > Interpret results
- Repurposing data can pose a challenge
- Balance coordination and manpower
- The value of diverse teams

Thank you!

Sources:

Project related materials from 2016/2017

- Energy Data
- Logistics Related Data
- Production Data
- Energy Data Overview
- Hochlastzeitfenster f
 ür 2016/2017 nach § 19 Abs. 2 Satz 1 StromNEV
- Overview measurement points
- https://www.bmwgroup-werke.com/dingolfing/en.html

For this presentation:

- press.bmwgroup.com
- International Energy Agency: World Energy Outlook 2016
- www.ag-energiebilanzen.de 2016 preliminary figures
- flickr.com

