
Department of Mathematics
Technische Universität München

TUM Data Innovation Lab

Driver Distraction Detection with Deep Learning

Nikolay Kadrileev Michael Schuster Marco Both
nikolay.kadrileev@tum.de m.schuster@tum.de marco.both@tum.de

Mentors: M.Sc. Simone Dari, Dr. Benny Kneissl
Project Lead: Dr. Ricardo Acevedo Cabra
Supervisor: Prof. Dr. Massimo Fornasier

Abstract

Driver distraction is one of the main causes of vehicle crashes and therefore detrimental
for driving safety. Finding ways to prevent crashes caused by a distracted driver would
not only have an impact on lowering vehicle accidents, but also support the development
of advanced driver-assistance systems and autonomous driving. In this work we first
discuss the decisions that went into creating our dataset using video data provided by
BMW AG. This dataset is then used to train a convolutional neural network which is
able to classify the head position of the driver. Furthermore, we investigate whether
it is feasible to include publicly available videos that contain different camera angles to
train the network. The results indicate that consistent camera placement is of significant
importance for the performance of our network.

Contents

List of Figures II

List of Tables III

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3

2 Preprocessing 5
2.1 Data Labeling . 5
2.2 Image Preprocessing . 7

2.2.1 General preprocessing for the network 8
2.2.2 Cropping . 8
2.2.3 Finding face region . 8
2.2.4 Dataset preprocessing . 11

2.3 Dataset Splitting . 12
2.3.1 Splitting by fraction . 12
2.3.2 Splitting by person . 12
2.3.3 Splitting overview for BMW and YouTube 13

3 Algorithm 15
3.1 Network architecture . 15

3.1.1 Different network architectures . 16
3.2 Implementation . 16

4 Training 17
4.1 Grouping of labels . 17
4.2 Loss function . 18
4.3 Optimizer . 19
4.4 Transfer learning . 19
4.5 Network hyperparameters . 20

5 Experiments 21
5.1 Performance measures . 21
5.2 Results . 22

6 Conclusion and Future Works 25

Bibliography 26

A Appendix 28

I

List of Figures

1.1 Summary of SAE International’s levels of driving automation for on-road
vehicles . 1

1.2 Driver, Vehicle, and Environment Related Critical Reasons 2
1.3 Driver-Related Critical Reasons . 3
1.4 Types of temporary personal factor . 3

2.1 Example for straight class. 6
2.2 Example for slightly left class. 6
2.3 Example for left class. 6
2.4 Example for slightly right class. 7
2.5 Example for right class. 7
2.6 Example for Distracted class. 7
2.7 Input image. 9
2.8 Image after cropping top left and cropping from the middle. 9
2.9 Rectangular regions containing faces with confidence levels of 98.88% and

98.26% for the left and right images respectively. 10
2.10 Images after face detection applied. 10
2.11 False negative detections. 10
2.12 Passenger detection problem. 11
2.13 Solution to the passenger detection problem. 11

3.1 VGG 16 network architecture . 16

5.1 Confusion matrix for the Revised BMW dataset using Face detection and
trained with 6 classes. 23

II

List of Tables

2.1 BMW Drivers . 12
2.2 YouTube Drivers . 13

5.1 Results for different approaches . 23
5.2 Best result details. 24

A.1 Comparison of VGG 16 and Resnet50. All experiments were performed
on the BMW dataset without face detection, the labels combined into two
classes (straight and the rest). 28

A.2 Comparison of training with and without class weights. All experiments
were performed on the BMW dataset without face detection using all six
classes. 28

A.3 Comparison of Adam and SGD. All experiments were performed on the
BMW dataset without face detection, the labels combined into two classes
(straight and the rest). 28

A.4 Transfer learning comparison. All experiments were performed on the
BMW dataset without face detection, the labels combined into two classes
(straight and the rest). 29

A.5 Accuracy results for the first milestone. We trained the dataset with 2 and
4 classes for 5 different weight decays. 29

A.6 Accuracy results for the second milestone. We trained the dataset with 6
classes for 5 different weight decays employing the cropping preprocessing
method. 29

A.7 Accuracy results for the second milestone. We trained the dataset with 6
classes for 5 different weight decays employing the face detection prepro-
cessing method. 29

A.8 Accuracy results for the second milestone. We trained the Youtube dataset
with 6 classes for 5 different weight decays employing the cropping and face
detection preprocessing methods. Here we display the best result out of all
5 weight decays. 30

A.9 Accuracy results for the second milestone. We trained the BMW dataset
with two different splits for 2 classes for 5 different weight decays employing
the cropping and face detection preprocessing methods. Here we display
the best result out of all 5 weight decays. 30

III

1 Introduction

One of the major causes for accidents in the driving environment, especially on the high-
way scenario, is driver distraction. Although the automotive industry is already on its
way to make self-driving cars a reality, the human driver will still be the backup vehicle
operator in potentially unclear or specific situations. This is valid up until SAE’s J3016
level 3 of driving automation, as seen in Figure 1.1, which appoints the human driver as
the fallback performance of the dynamic driving task.

Figure 1.1: Summary of SAE International’s levels of driving automation for on-road
vehicles [1].

In this project, we seek to address a section of a driver’s distraction detection utilizing deep
learning on video data. This work is a collaboration between the Technische Universität
München (TUM), Bayerische Motoren Werke Aktiengesellschaft (BMW AG), and the
Leibniz-Rechenzentrum (LRZ).

The remainder of this document is organized as follow: continuing this introduction in
Section 1, we will go over facts that motivated this work and discuss the problem statement
that outlines the scope of the project. Next, we introduce our approach, explaining the
employed procedure, projects decisions and challenges encountered along the way. Lastly,

1

we present our system’s results and wrap up the report with a conclusion and suggestions
for future work.

To comply with privacy requirements some information of this work is omitted in this
report and proprietary video data was censored.

1.1 Motivation

During the period from 2005 to 2007, the U.S. Department of Transportation conducted
a survey to collect information about events leading up to vehicle accidents. The main
focus was to collect data about the decisive event preceding the accident and attribute a
cause (critical reason) for the crash.

Figure 1.2 shows how the causes of vehicle crashes were distributed between drivers,
vehicles, and environment. In 94% of the cases, accidents were originated by human
error.

Figure 1.2: Driver, Vehicle, and Environment Related Critical Reasons [2].

To have a better insight on what is prompting driver mistakes, the study further classify
driver-related reasons in Figure 1.3. Recognition error, which included driver’s inat-
tention, internal and external distractions, and inadequate surveillance, was the most
frequently critical reason with 41% of the cases. Non-performance errors can also be
attributed as driver distraction from the driving performance, including sleep, coughing,
sneezing, etc. This sums up to almost 50% of all accidents caused by human drivers being
related to driver distraction.

Similarly in Europe, with the intention of finding effective countermeasures to traffic
crashes, a study was carried out concerning vehicle accidents. Once more, 52% of accidents
caused by driver mistakes (referred to in this study as temporary personal factor), were a
result of distracted and/or inattentive drivers. These facts are shown in Figure 1.4.

These studies characterize driver distraction as a substantial problem concerning driving
safety worldwide. The task of detecting this driver distraction emerges as an essential

2

Figure 1.3: Driver-Related Critical Reasons [2].

groundwork to solve the problem.

Figure 1.4: Types of temporary personal factor [3].

Besides accidents prevention, dealing with driver distraction can also support the devel-
opment of autonomous driving. SAE’s level 3 of automation imposes that the human
driver is expected to respond to a request to intervene from the automated driving sys-
tem [2]. This request is a notification to the driver that he/she should promptly begin
or resume control over the subject vehicle. Detecting a driver’s distraction is important
in this case to determine the human’s response time, given different forms of distraction,
thus allowing requests to be made in a suitable time.

1.2 Problem Statement

The main question raised is how to identify a driver’s distraction. There are several factors
that could be used as indicators for distraction. For instance, we could track whether the

3

driver has hands on the wheel, eye tracking could be performed, or smartphone usage
could be captured.

To classify an action as a distraction, we also need to bring context to the current situation.
Perhaps the usage of a smartphone while the vehicle is parked should not be classified as a
distraction. A driver not looking through the front windshield could possibly be glancing
over his left window to check if an intersection is clear for a turning maneuver. This
translates the problem into a complex task that would need a complete system containing
perception of the driver actions and the surrounding driving environment.

During the first phase of this project, the students together with their supervisors refined
the scope of this work to only track head movement. We want to know in which direction
the driver’s head is pointing in a video image. Due to the complexity of the computer
vision problem and powerful results of methods that rely on learning data representations,
deep learning methods were used in this project.

BMW provided several hours of video data, which the students utilized to build a neural
network to detect the driver’s head movement. One important objective was to generalize
this algorithm in a way that its application could be extended for publicly available video
data.

The task was to train and evaluate a deep learning model while finding ways to improve
accuracy and performance on unseen data. The final model was used on a completely
new test video of BMW to evaluate how well the Deep Learning model generalizes on new
data.

We had several ways to improve the results by experimenting with different components of
our deep learning system. We tried two preprocessing methods, a couple of dataset splits,
our network architecture with different optimizers, and trained our model with multiple
hyperparameters. We applied a variety of approaches and we explain our procedure and
results in the next sections.

4

2 Preprocessing

In this section we discuss the labeling and preprocessing techniques that were used to
collect and prepare the data for the classification task.

2.1 Data Labeling

To train our neural network, we needed to prepare a dataset containing annotated videos
that would serve as a base to training our network in each class. In this case, a class
refers to a head direction. As mentioned in Section 1.2, identifying distraction can be
a complicated task that depends on context. For this reason, we decided to utilize six
classes to describe a set of head positions. A more extensive commentary on this decision
and how data labeling influenced our model training is presented in Section 4.1.

To label our video data with class annotations, we used a labeling script. We opted to
train our model on still frames. This script would play the subject video and allow the
user to press a character in the keyboard (characters were assigned to each class) to label
the current video frame. This frame would then be saved as an image inside a dataset
folder for its specific class. This procedure allowed us to label over 11 thousand frames,
in order to have enough diverse data. The same procedure is executed when the trained
model is deployed. Still frames are captured from the video, classified by the network and
then put back together as a video.

Along the project we observed that having a strict labeling criterion was crucial to produce
a more accurate model. Next, we will describe our labeling principle for each class and
provide a frame as an example:

1. Straight: For all classes, we are looking for specific references to interpret the
driver’s head position. For the straight class, we can see both cheekbones, but the
nose is not pointing in the camera’s direction.

2. Slightly left: The references we look for in the slightly left class are both cheekbones
are clearly visible. Besides that, we also often have the front vertical part of the
nose facing the camera.

3. Left: For the left class, we labeled frames where the head is completely turned to
the left. Here we use the jawline as a reference. Also, notice that the driver’s left
cheek is not visible.

4. Slightly right: For this class, we check if it is possible to see the left jawline of
the driver’s face and if the right cheekbone is at least partially covered by the nose
pointing slightly to the right.

5

Figure 2.1: Example for straight class.

Figure 2.2: Example for slightly left class.

Figure 2.3: Example for left class.

5. Right: This class is very similar to the left class. The references are the well-defined
jawline and the absence of the driver’s right cheek.

6. Distracted: Here distracted means any head position where the driver is not look-
ing through the windshield or any side window. In Figure 2.6 the driver has the head
pointing downwards. This can be easily seen by the direction where the nose and
chin are pointing. Other common cases for this class would be looking completely
down (in any side) or having the head turned to the back seat.

6

Figure 2.4: Example for slightly right class.

Figure 2.5: Example for right class.

Figure 2.6: Example for Distracted class.

2.2 Image Preprocessing

The script preprocess image.py gives users a possibility to preprocess a single image.
There are three flags that determine the preprocessing procedure that will be discussed
throughout this section.

7

2.2.1 General preprocessing for the network

The subtract imagenet mean flag tells the program to subtract the ImageNet mean to
replicate the preprocessing technique used during the training of the VGG16 network.
Subtracting these mean values is crucial for the performance because we do not start the
training from scratch but use the pretrained weights. Unfortunately, the mean values are
not integer numbers, which our classification network expects as inputs. Therefore, we
decided to perform the mean subtraction step inside of the neural network and set this
flag to False.

The VGG16 image input size is 224x224 pixels. Therefore, we resize a face region as the
final step of our image preprocessing algorithm. Moreover, this face region is always a
square. In the following subsections, we will explain how to get these square areas. Of
course, we could rescale and resize a rectangular area, but then we should always use the
same scaling for the width and length of every image to preserve the proportions of a face,
which is more difficult in the end.

2.2.2 Cropping

The youtube video flag tells the network if the cropping of the top left part should be
performed. This step should be used for the BMW videos because they consist of four
camera views, namely, two interior and two exterior views. Due to privacy and data
protection policy, we show only interior views in the report.

2.2.3 Finding face region

Using the find driver face flag, one chooses which method will be used to find a driver’s
face, and namely, cropping from the middle or finding a face using a face detector.

Here, we want to give a small comparison of both methods that assist in finding a face
region. But why do not we take just the whole image for classification? The answer is
that the input image contains too much information, which we actually do not need, e.g.
background, or another person sitting in a passenger seat. Therefore, we want to help
our network to focus on those features that really matter in finding a distracted driver.

Cropping from the middle

Cropping from the middle is a simple preprocessing method that returns a center part
of an image, based on the smallest dimension between height and width. This results in
a square image with the driver’s head. An example of using this technique is presented
in Figure 2.7 and Figure 2.8. The main drawback of cropping is its sensitivity to the
camera position, e.g. for YouTube videos a driver almost never appears in the middle of
the frame. Therefore, this method is only valid for one specific camera position. Another

8

problem is that we still have some background in the image. To tackle these problems,
we created the second preprocessing method based on neural networks.

Figure 2.7: Input image.

Figure 2.8: Image after cropping top left and cropping from the middle.

Face detector

As we have already mentioned above, Face detection is another preprocessing method
implemented in our program that returns a region of interest (ROI) containing a driver’s
face. This approach is based on the Single Short Detector Framework (SSD) with a
ResNet base network. Weights and neural network architecture files in Caffe format are
available on GitHub of OpenCV. After downloading these files, one have to put them into
the preprocessing folder. The newest release of OpenCV makes it possible to read Caffe
models and perform classification, detection or other tasks depending on the network
functionality. The output of the face detection network is an array with rectangular
regions and confidence levels for each region. Confidence level is a value between 0 and
1 showing the probability that a returned rectangle contains a face (Figure 2.9). Using
a threshold, we can get rid of detections with low confidence levels. In our program, we
ended up with a threshold value of 0.4, which is a good trade-off between false positive
and false negative detections. This parameter can be changed in the config.py file. The
returned rectangular region is further postprocessed, and namely, its smallest dimension
is extended to be equal to the largest one. Therefore, an output is given as coordinates
of the top left and bottom right corners of a square (Figure 2.10).

9

Figure 2.9: Rectangular regions containing faces with confidence levels of 98.88% and
98.26% for the left and right images respectively.

Figure 2.10: Images after face detection applied.

The main drawback of the face detection approach compared to the cropping technique is
the problem of false negative detections. Especially for noisy pictures, e.g. night frames,
the accuracy of the face detection algorithm drops significantly. Also, the algorithm
fails in detecting a head from the back. Two examples of these situations are given in
Figure 2.11). If there was no detection with confidence larger than the threshold, the
preprocess image.py script returns the variable valid image as False, otherwise as
True.

Figure 2.11: False negative detections.

While working with BMW videos, we almost always had a situation where only a driver’s
face was visible. Therefore, we took a rectangle with the largest confidence and returned
it if the confidence level was larger than the threshold. Even for distracted frames with
some part of a driver’s face hidden, a passenger’s face is still rather small to be detected
with a large confidence level, as in the right part of Figure 2.12). Unfortunately, it is not
the case for YouTube videos, which we added to our dataset during the 3rd Milestone.
YouTube bloggers usually put their cameras in the middle of the car front panel. Hence,
a passenger’s face is detected with the same confidence level as a driver’s face, as in the
left part of Figure 2.12. Therefore, the script preprocess image.py was changed and in

10

the current implementation it finds two region with faces that have the highest level of
confidence. As a final result, the script returns the leftmost region for YouTube videos or
the rightmost region for BMW videos depending on the value of the youtube video flag.
The result of this approach is presented in Figure 2.13. If only one face has been detected
with a high confidence level, the script checks for its location in the image and returns the
face region if only it is inside the middle or left part for YouTube videos and the middle
or right part for BMW videos.

Figure 2.12: Passenger detection problem.

Figure 2.13: Solution to the passenger detection problem.

2.2.4 Dataset preprocessing

Until now, we have preprocessed and found a face region of a single image. To automate
this process, we wrote another script images to tfrecords.py. It converts multiple im-
ages to a single tfrecords file that is used by the network for training. This script also calls
a method from the preprocess image.py script to crop and resize the image according
to the requirements of the network. If the face detection is used, some detections can fail
and do not appear in the tfrecords files. But these images are saved in a false negative
folder on the same path as the output tfrecords file and can be used further, e.g. for
plotting ROC curves or calculating accuracy. This script also checks a name of the input
image. If an image contains ”youtube” in its name, then the script sets True value for
the youtube video flag while calling the preprocess image.py script.

11

2.3 Dataset Splitting

Choosing a good or a bad dataset splitting strategy can have a huge influence on the
overall performance of the neural network. Therefore, we spent quite a lot of time on
analyzing videos we had and finding an efficient partitioning method.

2.3.1 Splitting by fraction

In the beginning, we used the simplest splitting approach, i.e., splitting by fraction. This
method was implemented in the split dataset.py script. This script splits the dataset
in the training, validation and testing sets. Throughout the project, we used 80% of
the dataset for training, 10% for validation and the rest 10% for testing. The script
requires training and validation fractions as input arguments, which indicate how much
data are used for train and validation respectively and the fraction of test data is given by
1− (train fraction+val fraction). Frames are drawn randomly from the whole dataset,
i.e., the same person can appear in all subsets, especially if the number of input frames
for that driver is large. Therefore, the network trains and evaluates its performance on
identical drivers having the same features, e.g., clothes, hair, facial shapes and forms. And
this is the main weakness of the splitting by fraction approach. Although we get almost
perfect classification accuracy for both training and evaluation, the network struggles to
classify a frame with a person it has not seen before.

Table 2.1: BMW Drivers

Person Features # of Photos
Male 1 brown hair, daylight 623
Male 2 bald, daylight, night time 700
Male 3 dark hair, daylight 2248
Male 4 dark hair, daylight, sunglasses 491
Male 5 blond hair, daylight 223
Male 6 bald, daylight 226
Male 7 blonde hair, daylight, simulated driving 256
Male 8 brown hair, daylight, simulated driving 109

Female 1 blonde hair, daylight, night time 2723
Female 2 brunette, daylight 1803
Female 3 brunette, daylight, glasses 377
Female 4 brunette, daylight, simulated driving 378

2.3.2 Splitting by person

The goal of our algorithm is to correctly classify an unknown driver. Therefore, we decided
to split the dataset by person, e.g. if a person appears in the training dataset, then we
put all other videos of this person solely in the same dataset. Moreover, to make the

12

splitting sets more diverse, we analyzed the BMW and YouTube videos and put videos
with the same features in different sets. All drivers’ features are given in Table 2.1 and
Table 2.2.

Table 2.2: YouTube Drivers

Person Features # of Photos
Male 9 brunette, daylight, headband 32
Male 10 dark hair, night time, glasses 164
Female 5 blonde hair, daylight, headwear 338
Female 6 blonde hair, daylight 40
Female 7 brunette, daylight, sunglasses 32
Female 8 dark hair, daylight, hat 18
Female 9 blonde hair, daylight, hat 64
Female 10 brunette, daylight 20
Female 11 red hair, daylight, sunglasses 40
Female 12 brunette, daylight 29
Female 13 brunette, daylight, glasses 32
Female 14 blonde hair, daylight 118

2.3.3 Splitting overview for BMW and YouTube

To split the dataset by person, we created another script called split dataset by name.py.
This script partitions the dataset into training, validation and testing sets by names of
input videos. It requires training and validation fractions, i.e., names of videos to be used
for training and validation. One should use the space bar to add more than one video in
a category. The rest is used for testing.

The BMW dataset was split by person as follows:

• Training, 7747 images (76%)

– Female 1, Female 2, Male 3, Male 4, Male 6, Male 7

– Features: daylight, night time, sunglasses

• Validation, 1410 images (14%)

– Female 4, Male 2, Male 5, Male 8

– Features: daylight, night time

• Testing, 1000 images (10%)

– Female 3, Male 1

– Features: daylight, glasses

13

The main drawback of the BMW dataset is a limited number of drivers and features.
Although we tried to split the same features into different subsets and at the same time
hold splitting fractions at a reasonable level, we did not get some important features in
the testing set, e.g., night time frames nor a person wearing sunglasses.

Adding YouTube frames increased diversity of the data. The YouTube dataset was split
by person to make new features appear in the subsets:

• Training, 496 images (54%)

– Female 5, Female 6, Female 14

– Features: daylight, night time, sunglasses

• Validation, 163 images (18%)

– Female 7, Female 8, Female 10, Female 12, Female 13, Male 9

– Features: daylight, hat, sunglasses, headband

• Testing, 268 images (28%)

– Female 11, Female 9, Male 10

– Features: daylight, night time, hat, sunglasses

The size of the YouTube dataset is 10 times smaller than the BMW dataset. Therefore,
whatever fractions for subsets we choose, they will not significantly influence the overall
proportion. But we have night frames and sunglasses in the testing set, and headwear in
the testing and validation sets. In the combined BMW+Youtube Dataset, the training
set consists of 74% of images, 14% belong to the validation set and the rest 12% of the
data are included in the testing part.

14

3 Algorithm

We will now discuss the algorithm that we used to classify the images in our dataset.
We decided to use a convolutional neural network due to its success in various image
classification tasks [4]. We assume the reader is familiar with the way neural networks
are working, in particular convolutional, max pooling and fully connected layers. If this
is not the case, we suggest reading some literature (e.g. [5]) available on this topic before
continuing with this paper.

3.1 Network architecture

For our experiments we chose the popular VGG 16 network due to its simple architecture
and the possibility to download pretrained weights for it.
The input to the network is a 224x224x3 RGB image. It then gets passed through multiple
blocks consisting of convolutional layers followed by a max pooling layer. All convolutional
layers have a kernel size of 3x3, stride 1 and 1 pixel padding on each side, therefore
preserving the width and height of the input. Every few convolution layers, a max pooling
layer with size 2x2 and stride 2 is inserted [4]. The pooling layers help by not only reducing
the dimension by 2 and therefore reducing the computational complexity, but also make
the network less sensitive to small translations in the input [5]. After the convolutional and
pooling layers there are two fully connected hidden layers followed by one fully connected
output layer. The activation function is the rectifier function f(x) = max(0, x) [6] in all
of the hidden layers (both convolutional and fully connected) and the identity function in
the output layer.
We use the softmax function to map the real-valued output vector of our network to a
vector whose values can be interpreted as the probability of our network assigning some
example x to some class i. Let C be the number of neurons in the last layer, and therefore
also the amount of classes we are training the network with. Now let s = f(x;W) ∈ RC

be the output of our network for input x and some weights W . Then the probability pi
of our network assigning class i ∈ {1, ..., C} to the input x is given by

pi =
esi∑C
j=1 e

sj
.

As ex > 0 for all x ∈ R and
∑C

i=1 pi =
∑C

i=1 e
si∑C

j=1 e
sj

= 1, we can see that the entries of p sum

up to 1 and pi ∈ [0, 1] [7].
A visualization of the complete network architecture can be seen in Figure 3.1.

15

Figure 3.1: VGG 16 network architecture [8].

3.1.1 Different network architectures

In recent years, results have shown that increasing the depth (amount of layers) of a
network leads to better performance, especially in visual recognition tasks [9]. However
it gets harder to train these networks the more layers are added. He et al. suggest deep
residual learning to deal with problems arising in very deep networks. Instead of learning
the actual desired mapping H(x), stacked blocks of layers inside the network are made
to fit another mapping F(x) := H(x)− x [9]. They achieve this by introducing shortcut
connections around these stacked layers that perform an identity mapping. Empirical
results from their paper show that this is indeed easier to optimize and allows the training
of much deeper networks.
As this network design outperformed the VGG 16 network on various image-related tasks,
we experimented with the Resnet50 architecture for our dataset. However we found no
difference in the results achieved by both architectures, so we decided to keep training
with the VGG 16 network (results can be found in Appendix Table A.1).

3.2 Implementation

The implementation of our algorithm was done in Python using the deep learning frame-
work TensorFlow [10]. We trained our network on a Nvidia Pascal P100 GPU provided
to us by the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and
Humanities. The best results were achieved after 80 epochs on average, which using this
hardware took around 40 minutes. Classifying a single image took 7,1 milliseconds (68,8
milliseconds using face detection) on average on a GeForce GTX 1080 Ti GPU. Taking
no other computations into account, our algorithm could classify 140 images (14 using
face detection) per second.

16

4 Training

In this chapter we discuss different aspects of training our network. This includes if (and
how) we should merge certain labels of our dataset, how to deal with the uneven data
distribution and how we chose the hyperparameters used for training.

4.1 Grouping of labels

Before actually training our network, there were several options to use our dataset that
would yield different interpretations of the results. In this section we discuss the ap-
proaches we decided to use and why we think they are beneficial.
When training using all six classes, additional data can be incorporated more easily to
identify whether the driver is actually distracted. One of the shortcomings of this work
is that the decision whether the driver is distracted or not is based solely on the head
position. Turning the car left or right might for example also be a reason to turn the
head to the side without actually being distracted. Sensor data from the car could be
used together with the classified head position to improve the decision, which would not
be as easy if the algorithm was only trained on two classes. Another benefit of training
with six classes is that it helped us identify problems in our algorithm design and label-
ing process. After observing lots of misclassifications between certain classes, we defined
stricter criteria for labeling and refined our dataset, which ended up increasing the accu-
racy significantly.
Training with two classes on the other hand also has some advantages. First of all, it is
an easier problem than training with more classes so it should be easier to get satisfactory
results. Furthermore, if not combining the results of six class classification with additional
data, the results have to be merged anyway to classify whether a driver is distracted or
not. In this case it would be more straightforward to train with only two classes from the
beginning.
For the training with two classes, we tried combining the six classes in two different ways.
The first alternative we tried was splitting it in two classes by considering the straight
class as not distracted, and merging all the other ones together as distracted. The second
alternative was merging straight, slightly left and slightly right as not distracted, and the
remaining ones as distracted. While the first option requires the driver to look straight to
the front to classify him as not distracted, the second option allows a little more freedom
for the head to be slightly turned.
Results of both class merging approaches as well as training with six classes will be dis-
cussed in the next chapter.

17

4.2 Loss function

The cross entropy between two probability distributions p and q is given by

H(p, q) = Ep [−log q] = H(p) +DKL (p ‖ q) ,

where H(p) is the entropy of p and DKL (p ‖ q) is the Kullback–Leibler divergence (KL
divergence) from q to p [5]. Minimizing the cross entropy with respect to q is equivalent
to minimizing the KL divergence because the entropy does not depend on q. As the KL
divergence measures the distance between two probability distributions, we can interpret
the optimization in our network as finding an ouput distribution that approximates the
real label distribution as good as possible.
Using the cross entropy between the true labels and the predicted probabilites of our
network we obtain the following loss function:

L(W) = −
N∑

n=1

C∑
c=1

ync log pnc ,

where N is the number of training examples, C the number of classes, pn ∈ RC contains
the softmax predictions of the network and yn ∈ RC is a one-hot vector containing a 1 at
the index of the correct class and zeros otherwise [7].
When starting to create the dataset, we labeled multiple classes to keep open options for
the future, however we were still planning to train on two classes. Therefore, and also
due to the drivers looking straight for a majority of the frames in our videos, we ended
up with the data distribution described in section 2.1. The dataset is approximately uni-
formly distributed when training on two classes (straight and the combination of all other
classes), but heavily unbalanced when training with all six individual classes.
When training with six classes we therefore tried cost sensitive learning, which outper-
formed other methods dealing with an imbalanced dataset in [11]. This was done by
adapting the loss function to assign a different cost per example depending on the inverse
class frequency in the dataset, resulting in a higher loss for misclassified examples in a
minority class than for misclassified examples in a majority class.
Let tn be the true class for training example n. The modified loss function is then given
by

L(W) = −
N∑

n=1

1

classFrequency(tn)

C∑
c=1

ync log pnc with

classFrequency(c) =
#training examples with class c

N
.

The algorithm made only few mistakes even for classes with few examples, and our ex-
periments using this modified loss function lead to no improvements (see Appendix Table
A.2 for details). We therefore decided to use the standard cross entropy loss for simplicity.

18

4.3 Optimizer

Due to the high dimensionality of the parameter space in our problem, higher order
optimization methods are not that well suited. We therefore decided to use the popular
Adam Optimizer to train our algorithm, which has been empirically shown to outperform
other first-order optimization algorithms on various tasks. It is a first order optimization
method that uses both the first and second moment of the gradient to compute individual
adaptive learning rates per parameter [12]. The update formula of the optimization
algorithm is given by

xt = xt−1 − α ·
mt

1− βt
1

/(√
vt

1− βt
2

+ ε

)
with α being the learning rate, β1 and β2 the exponential decay rates for the first and
second oder gradient moments, ε some small constant to avoid division by zero,
vt = β2 · vt−1 + (1− β2) · ∇xf(xt−1)�∇xf(xt−1) where � refers to the elementwise mul-
tiplication, and mt = β1 ·mt−1 + (1− β1) · ∇xf(xt−1) [12].

Loshchilov and Hutter discovered a problem in the way most modern Deep Learning
frameworks introduce weight decay in a combination with the Adam Optimizer. This im-
plementation leads to a decrease in effectiveness of weight decay [13]. We ran experiments
with both Adam and Stochastic Gradient Descent (SGD), and even with this implemen-
tation issue Adam seemed to achieve similar results while converging faster than SGD
(results can be found in Appendix Table A.3). We therefore decided to keep training
using the Adam Optimizer.

4.4 Transfer learning

Empirical results have shown that weights in the early layers of convolutional neural
networks are not specific to the dataset they were trained on, but rather general and used
to extract features like edges or colors in the image [14]. Due to this observation and
our small data set making it hard to train the whole network from scratch, we decided
to initialize our network with pretrained weights on ImageNet [15]. To achieve a similar
data distribution as the data that was used for training the pretrained weights, we decided
to follow the same preprocessing steps, mainly subtracting the mean RGB value of the
ImageNet training set.
Yosinski et al. show that it is important to choose the right amount of layers that have
their weights transferred [14]. Both this and deciding whether to fine-tune or freeze the
transferred layers impacts the performance of the network. Due to our dataset being
relatively small and the huge amount of parameters in the fully connected layers of the
VGG network, we decided to transfer the weights for all 13 convolutional layers from the
pretrained ImageNet weights. We then ran the following experiments:

1. Keep all the convolutional layers frozen for the whole training duration.

19

2. Start training the convolutional layers immediately. Due to a high initial learning
rate this probably destroys the carefully tuned pretrained weights immediately.

3. Start training the convolutional layers after some epochs.

Not training the convolutional layers at all worked best, so we ran our remaining experi-
ments using this setting (results can be found in Appendix Table A.4).

4.5 Network hyperparameters

There were several other hyperparamters that we had to choose for training our network,
including the learning rate, exponential decay rates β1 and β2 for Adam, batch size and
how to regularize the network using weight decay [16] and dropout [17]. Due to time
and computing power constraints, we kept some of the hyperparameters at default values
that seem to work well on a variety of problems. We then performed a grid search over
the remaining hyperparamters and used our validation set to evaluate the generalization
performance [5]. Section 5.2 will discuss the results of the best models evaluated on our
test set.

20

5 Experiments

The last two chapters discussed the architecture of our network and some details on
training it. We will now explain different performance measures for our algorithm and
then use them to present and evaluate the results achieved over the course of this project.

5.1 Performance measures

In this section we discuss the different measures we used to evaluate the performance and
compare different versions of our algorithm.
When using face detection as a preprocessing step, we decided to count all images where no
face was detected as classified incorrectly. Depending on the application of the algorithm
one could however also classify them as distracted or use more sophisticated approaches
that we will discuss in chapter 6.

Let N be the total number of images including the ones where no face was detected, C
the number of classes. For i ∈ {1, ..., C}, TPi refers to the number of images correctly
classified as class i, FPi refers to the number of images incorrectly classified as class i and
FNi refers to the number of images of true class i that were incorrectly classified.

• Accuracy is the overall percentage of images that our algorithm classified as the
correct head position [18].

Accuracy =

∑C
i=1 TPi

N

• Precision describes what percentage of images classified as class i are classified
correctly [18].

Precisioni =
TPi

TPi + FPi

• For some class i, the percentage of true images in that class classified correctly is
called Recall [18].

Recalli =
TPi

TPi + FNi

Furthermore we used confusion matrices and receiver operating characteristic curves
(ROC curves) to visualize the results and identify pairs of classes that our algorithm
was struggling with. The ROC curve can be plotted using values calculated from the con-
fusion matrix at different decision tresholds, in particular the recall and the false positive
rate [19]. The area under the curve (AUC) of the ROC curve can then be used to measure

21

the performance of the algorithm [18].
While the accuracy allows us to compare the overall ability of our algorithm to classify
the direction in which the driver is looking, precision and recall give more insights into
what kind of errors the algorithm is making. The values reported for both precision and
recall of our algorithm are for the class not distracted. As the algorithm might be used
in safety-critical applications, high precision is preferred over high recall. The vehicle
might only display a warning if the driver is incorrectly classified as distracted, failing
to warn a distracted driver classified as not distracted however might have more severe
consequences.

5.2 Results

Since we tried a lot of different methods and parameters, as described in previous sections,
we had a great number of accuracy, precision values, and confusion matrices for each
test, including for hyperparameters tuning. Because of that, we present in Table 5.1 a
summary of our best results for the most prominent changes. We present which dataset
was paired to which processing method and choice for a number of classes. We show their
resulting accuracy rates and a final accuracy to better express how well methods using
face detection performed after their false negative rate (FN rate). Next, we discuss some
important details and present our best result in Table 5.2.

We learned that using few different driver faces would cause overfitting and consequently
a bad generalization for unseen video data. Having several frames for a same driver on
a dataset can result in repetitive data, which do not provide knowledge of head direction
to our model. We solved this problem by adding more drivers, as described in section
2, and making sure that the model would be evaluated and tested against complete new
video data. Not only a different video but an unknown driver. That way we could train
the network to achieve the best generalization for our application.

Labeling consistently was a quite difficult task. We had to revise our labeled dataset,
especially after our network exposed inconsistencies in our manual labels. The stricter
our labeling criteria, the better our model became. We believe there is still room for
improvement. A new dataset revision could be able to solve our struggles between classes
straight and slightly right. This problem between these two classes is presented in Figure
5.1. The worse classification performance are 51 frames belonging to the straight class
are wrongly classified as slightly right.

The usage of a face detection network in preprocessing had a substancial impact in im-
proving the accuracy of our model as seen in Table 5.1. Although we added complexity to
our preprocessing procedure, this project decision was very beneficial. Besides improved
performance on the BMW dataset, face detection was the main reason for the good per-
formance of our model in public available videos. We achieved lower accuracies in all
models that involved public videos, primarily due to different camera angles.

22

Table 5.1: Results for different approaches

Dataset Preprocessing Splitting FN Rate Acc Final Acc
BMW Cropping straight vs. rest - 0.85 0.85
BMW Cropping straight + slightly - 0.83 0.83
BMW Cropping 6 classes - 0.83 0.83
BMW Cropping straight + slightly 0.02 0.84 0.82
BMW Face Detection straight vs. rest 0.02 0.90 0.88
BMW Face Detection 6 classes 0.02 0.89 0.88

Revised BMW Face Detection 6 classes 0.02 0.92 0.90
Youtube + BMW Face Detection 6 classes 0.039 0.85 0.82
Youtube + BMW Face Detection straight + slightly 0.039 0.92 0.88
Youtube + BMW Face Detection straight vs. rest 0.039 0.87 0.84

Figure 5.1: Confusion matrix for the Revised BMW dataset using Face detection and
trained with 6 classes.

23

Table 5.2: Best result details.

Dataset BMW Revised
Preprocessing Face detection

Number of classes 6
Batch size 64

Learning rate 0.0001
Learning decay rate 0.9

Learning rate decay steps 1000
Weight decay rate 0.05
Testing accuracy 0.92

Total testing accuracy 0.90
Precision ”straight” 0.97

Recall ”straight” 0.88

24

6 Conclusion and Future Works

In this work, we presented an algorithm to identify a driver’s head movement using a neu-
ral network with deep learning. We found that to achieve a good accuracy and precision,
several adjustments were needed from data selection and splitting to network layer setup
and hyperparameter tuning. Nonetheless, we achieved satisfactory results (especially with
BMW video data) and proved that our concept can be applied to public videos with a
worsened performance (around 8% difference as seen in Table 5.1).

Still, the success of the network’s prediction relies on a positive face detection in prepro-
cessing. For future works, alternatives could be implemented to process frames selected as
false negatives. One possible solution could be, for instance, apply our earlier model that
uses the cropping preprocessing method, since it already had an accurate performance.

To improve the network’s accuracy with BMW videos, the usage of an attention heatmap
(or class activation maps) could help understanding why our model is struggling between
straight and slightly right head positions. For a better performance with public available
videos, an even dataset containing the same amount of BMW and public video frames
could be used for training. This would mean more examples for slightly different camera
positions and new driver faces.

25

Bibliography

[1] Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated
Driving Systems, Society of Automotive Engineers International, January 2014.

[2] Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Cau-
sation Survey, National Highway Traffic Safety Administration, 1200 New Jersey
Avenue SE., Washington, DC 20590, March 2018, published by NHTSA’s National
Center for Statistics and Analysis.

[3] P. Thomas, A. Morris, R. Talbot, and H. Fagerlind, “Identifying the causes of road
crashes in europe,” in Annals of Advances in Automotive Medicine, vol. 57. Asso-
ciation for the Advancement of Automotive Medicine, September 2013, pp. 13–22.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available:
http://arxiv.org/abs/1409.1556

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[7] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[8] (2016) Vgg 16 architecture. [Online]. Available: https://heuritech.files.wordpress.
com/2016/02/vgg16.png?w=940

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: a system for large-scale machine learning.”
in OSDI, vol. 16, 2016, pp. 265–283.

[11] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class
imbalance problem in convolutional neural networks,” CoRR, vol. abs/1710.05381,
2017. [Online]. Available: http://arxiv.org/abs/1710.05381

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

26

http://arxiv.org/abs/1409.1556
http://www.deeplearningbook.org
https://heuritech.files.wordpress.com/2016/02/vgg16.png?w=940
https://heuritech.files.wordpress.com/2016/02/vgg16.png?w=940
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1710.05381
http://arxiv.org/abs/1412.6980

[13] I. Loshchilov and F. Hutter, “Fixing weight decay regularization in adam,” CoRR,
vol. abs/1711.05101, 2017. [Online]. Available: http://arxiv.org/abs/1711.05101

[14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?” in Advances in neural information processing systems, 2014,
pp. 3320–3328.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. Ieee, 2009, pp. 248–255.

[16] A. Krogh and J. A. Hertz, “A simple weight decay can improve generalization,” in
Advances in neural information processing systems, 1992, pp. 950–957.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-
nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[18] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for
classification tasks,” Information Processing & Management, vol. 45, no. 4, pp. 427
– 437, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0306457309000259

[19] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves,”
in Proceedings of the 23rd international conference on Machine learning. ACM, 2006,
pp. 233–240.

27

http://arxiv.org/abs/1711.05101
http://www.sciencedirect.com/science/article/pii/S0306457309000259
http://www.sciencedirect.com/science/article/pii/S0306457309000259

A Appendix

Table A.1: Comparison of VGG 16 and Resnet50. All experiments were performed on
the BMW dataset without face detection, the labels combined into two classes (straight
and the rest).

Network Learning rate Weight decay Accuracy
VGG 16 0.0001 0.0005 0.85
VGG 16 0.001 0.0005 0.89
VGG 16 0.001 0.005 0.88
Resnet50 0.0001 0.0005 0.83
Resnet50 0.001 0.0005 0.89
Resnet50 0.001 0.005 0.84

Table A.2: Comparison of training with and without class weights. All experiments
were performed on the BMW dataset without face detection using all six classes.

Class weights Learning rate Accuracy
No 0.0001 0.78
No 0.001 0.77
Yes 0.0001 76
Yes 0.001 74

Table A.3: Comparison of Adam and SGD. All experiments were performed on the
BMW dataset without face detection, the labels combined into two classes (straight and
the rest).

Optimizer Learning rate Weight decay Accuracy
Adam 0.0001 0.0005 0.85
Adam 0.001 0.0005 0.89
Adam 0.01 0.0005 0.83
SGD 0.0001 0.0005 0.82
SGD 0.001 0.0005 0.85
SGD 0.01 0.0005 0.83

28

Table A.4: Transfer learning comparison. All experiments were performed on the BMW
dataset without face detection, the labels combined into two classes (straight and the
rest).

Convolutional layers Learning rate Weight decay Accuracy
Frozen 0.0001 0.0005 0.85
Frozen 0.001 0.0005 0.89
Frozen 0.001 0.005 0.88

Frozen for first 15 epochs 0.0001 0.0005 0.88
Frozen for first 15 epochs 0.001 0.0005 0.88
Frozen for first 15 epochs 0.001 0.005 0.81
Trained from beginning 0.0001 0.0005 0.80
Trained from beginning 0.001 0.0005 0.88
Trained from beginning 0.001 0.005 0.73

Table A.5: Accuracy results for the first milestone. We trained the dataset with 2 and
4 classes for 5 different weight decays.

Weight decay 2 Classes 4 Classes
0.0005 0.85 0.74
0.01 0.83 0.72
0.1 0.82 0.74
1 0.82 0.72
10 0.73 0.59

Table A.6: Accuracy results for the second milestone. We trained the dataset with 6
classes for 5 different weight decays employing the cropping preprocessing method.

Weight decay 6 Classes
0.0005 0.78
0.01 0.71
0.1 0.77
1 0.68
10 0.68

Table A.7: Accuracy results for the second milestone. We trained the dataset with 6
classes for 5 different weight decays employing the face detection preprocessing method.

Weight decay 6 Classes
0.0005 0.82
0.01 0.85
0.1 0.85
1 0.82
10 0.82

29

Table A.8: Accuracy results for the second milestone. We trained the Youtube dataset
with 6 classes for 5 different weight decays employing the cropping and face detection
preprocessing methods. Here we display the best result out of all 5 weight decays.

Cropping Face detection
0.35 0.78

Table A.9: Accuracy results for the second milestone. We trained the BMW dataset
with two different splits for 2 classes for 5 different weight decays employing the cropping
and face detection preprocessing methods. Here we display the best result out of all 5
weight decays.

2 Classes split Cropping Face detection
straight vs rest 0.84 0.90

straight+slightly vs rest 0.83 0.84

30

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement

	Preprocessing
	Data Labeling
	Image Preprocessing
	General preprocessing for the network
	Cropping
	Finding face region
	Dataset preprocessing

	Dataset Splitting
	Splitting by fraction
	Splitting by person
	Splitting overview for BMW and YouTube

	Algorithm
	Network architecture
	Different network architectures

	Implementation

	Training
	Grouping of labels
	Loss function
	Optimizer
	Transfer learning
	Network hyperparameters

	Experiments
	Performance measures
	Results

	Conclusion and Future Works
	Bibliography
	Appendix

