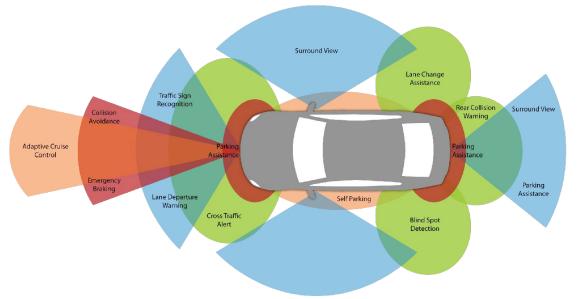

Maneuver prediction using vehicle sensor data

TUM Data Innovation Lab

Team: Nils Sturma, Harshit Chopra, Anna Kuvakina


Mentors: Nico Epple, Dr. Benny Kneissl Co-Mentor: Laure Vuaille

Project Lead: Dr. Ricardo Acevedo Cabra Supervisor: Prof. Dr. Massimo Fornasier

Motivation

Range of functionality of ADAS systems [1]

"We focus on the intention of the driver and develop an approach for lane change prediction"

Naturalistic driving studies

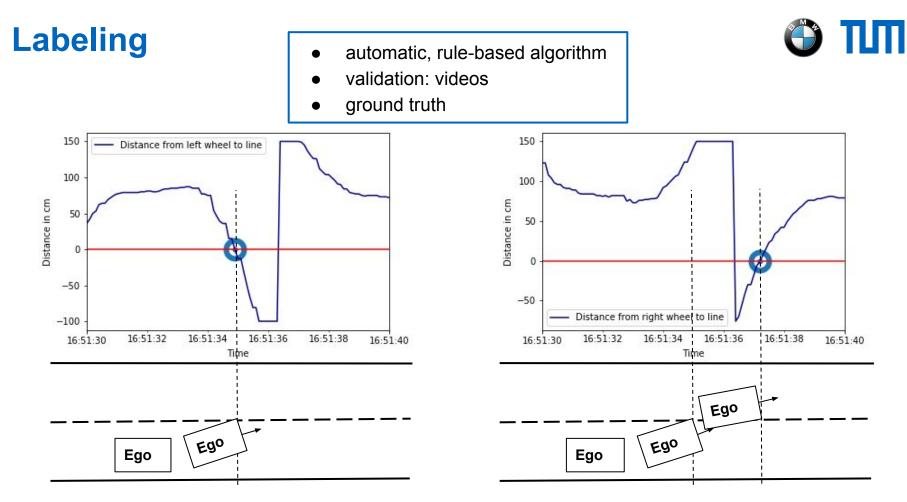
Test vehicles collect real world data in different countries using

- multiple sensors
- front and rear view cameras

We work with **signal** and **object** data collected on German highways

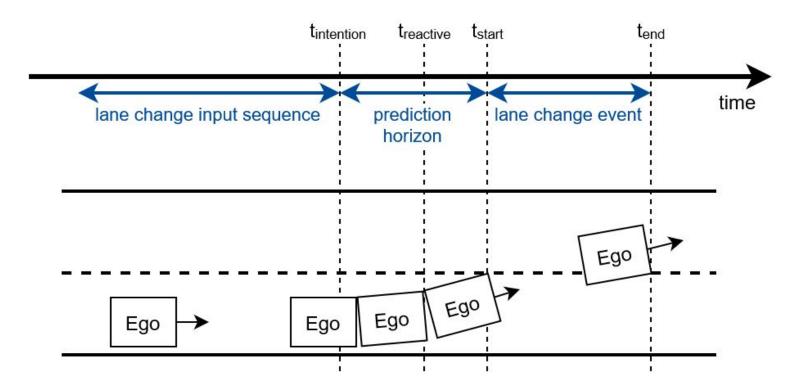
Overview

Preprocessing

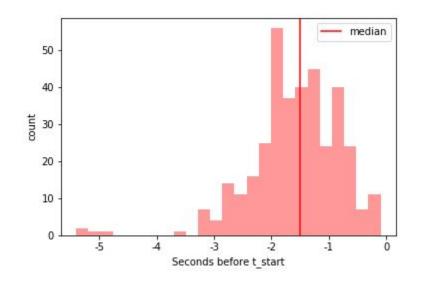

Feature engineering

Data exploration

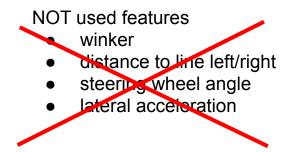
Algorithms


Results

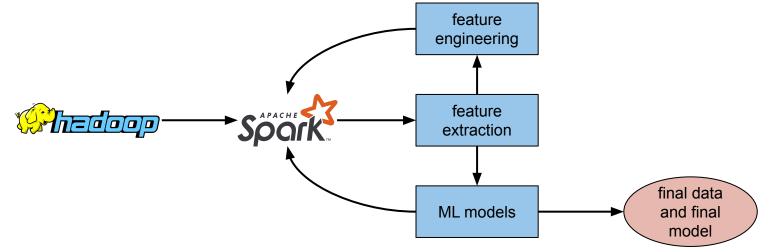
Case studies


Prediction horizon

Prediction horizon



Goal: predict driver's intention


Used features

- situation
- kinematics
- surrounding objects

Data workflow

	Train	Test
lane change samples	13416	887
non lane change samples	68393	4113

Overview

Preprocessing

Feature engineering

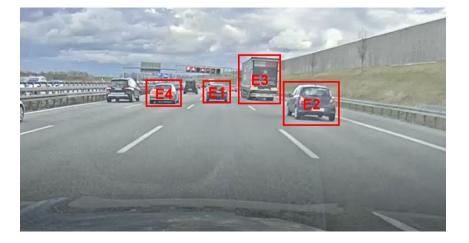
Data exploration

Algorithms

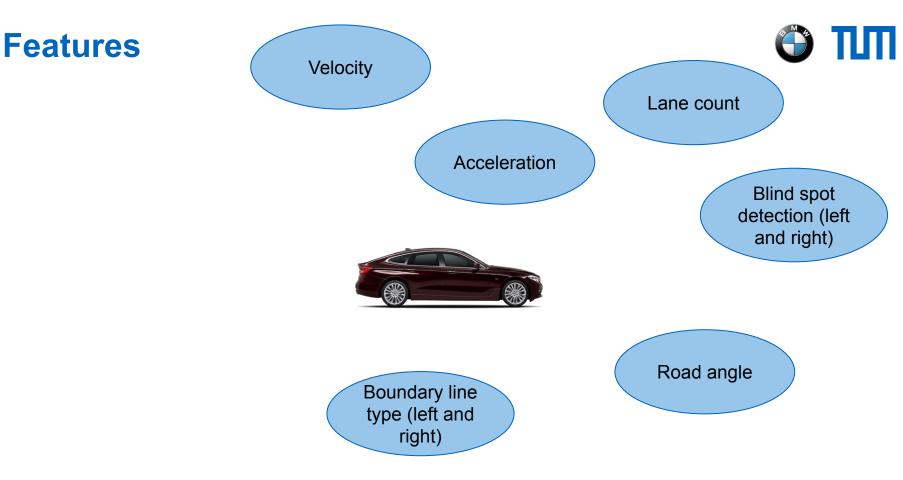
Results

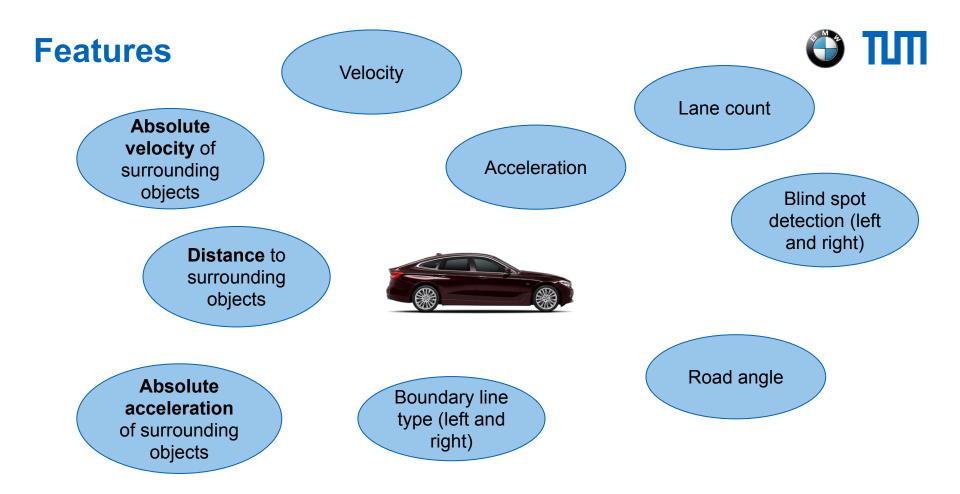
Case studies

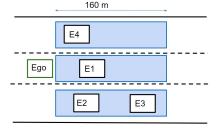
E2 E3


Data Innovation Lab | Maneuver prediction using vehicle sensor data | 06/08/2019

Surrounding objects


160 m


E4


Feature engineering

• Inverse time to collison

• Time headway

 $\frac{speed_Ego_speed_E1}{distance_Ego_E1}$

$$\frac{distance_Ego_E1}{speed_Ego}$$

• Relative speed

• Handling missing objects

E1 exists	E2 exists	E3 exists	E4 exists
yes/no	yes/no	yes/no	yes/no

Overview

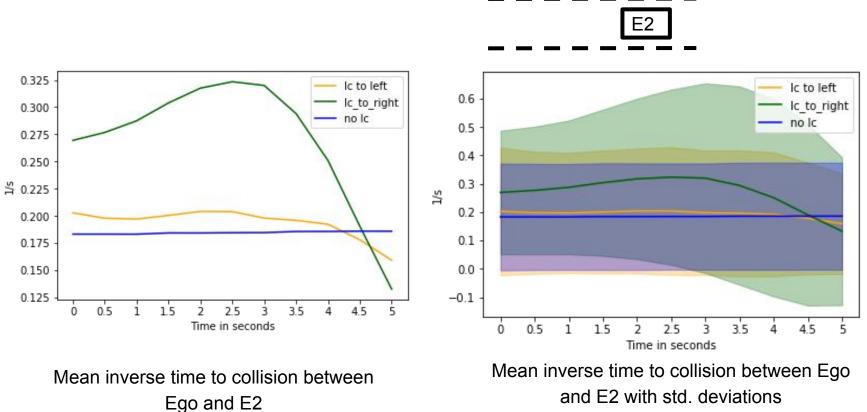
Preprocessing

Feature engineering

Data exploration

Algorithms

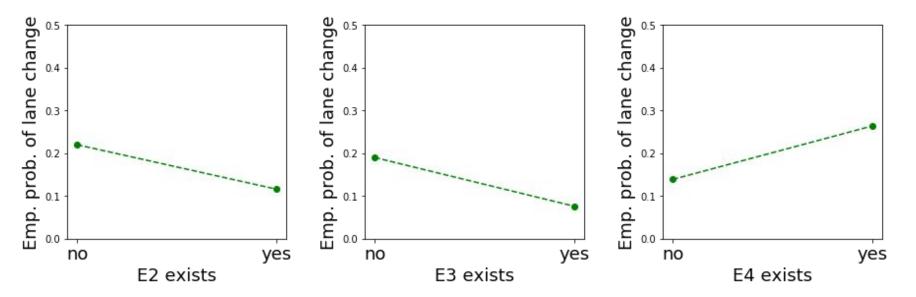
Results


Case studies

Continuous features

Ego

E1


Ego

Continuous features

Data Innovation Lab | Maneuver prediction using vehicle sensor data | 06/08/2019

Categorical features

Probability of lane change conditioned on the existence of vehicles

Overview

Preprocessing

Feature engineering

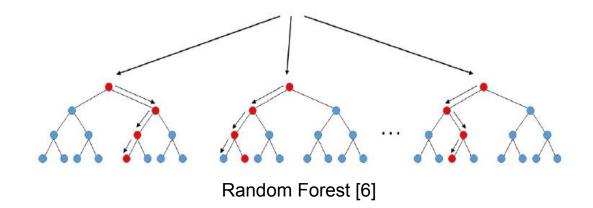
Data exploration

Algorithms

Results

Case studies

Performance metrics



$$precision = rac{TP_count}{TP_count+FP_count}$$
 $recall = rac{TP_count}{TP_count+FN_count}$

$$F_1 = rac{2*precision*recall}{precision+recall}$$

Random Forest

$$G = 1 - p_{lc}^2 - p_{nlc}^2 \qquad \qquad J(k, t_k) = \frac{m_{left}}{m} G_{left} + \frac{m_{right}}{m} G_{right}$$

Data Innovation Lab | Maneuver prediction using vehicle sensor data | 06/08/2019

2.5

difference 3

3.5

4.5

4

5

Random Forest

- no scaling
- fast training

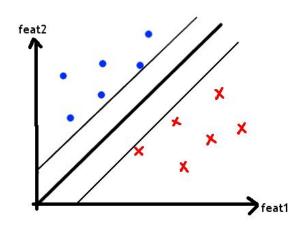
Used features:

0.5

1

1.5

2



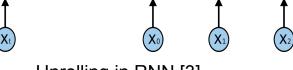
Data Innovation Lab | Maneuver prediction using vehicle sensor data | 06/08/2019

Support Vector Machine

- Same features as for Random Forest
 - Kernel Trick (RBF kernel)
 - Grid Search
 - Gamma
 - Penalty parameter
 - Forward Feature Selection
 - Backward Elimination

Linear SVM classifier [2]

Forward Feature Selection Algorithm


		-		
Best Features	F1 score			
vehicles right count	0.3659			
boundary line left (type 3)	0.3823			
longitudinal velocity	0.4018		F1 score	Accurac
longitudinal acceleration	0.4406		0.5642	0.8273
difference of velocity between Ego and E2	0.4863			
boundary line left (type 3) start	0.4977			
inverse time to collision between Ego and E1	0.5107			

F1 score	Accuracy	
0.5642	0.8273	

Data Innovation Lab | Maneuver prediction using vehicle sensor data | 06/08/2019

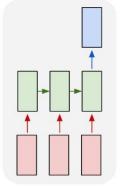
Recurrent Neural Networks

- Learn relations between sequences of inputs
- Input samples -(no_of_timestamps * features)
- LSTM/GRU
- Loss: Binary cross entropy

(h₀)

Α

 (h_1)


А

Α

Unrolling in RNN [3]

=

$$-\frac{1}{N}\sum_{i=0}^{N} y_{i} \cdot log(\hat{y}_{i}) + (1 - y_{i}) \cdot log(1 - \hat{y}_{i})$$

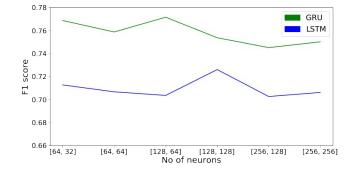
Many-to-one RNN network [4]

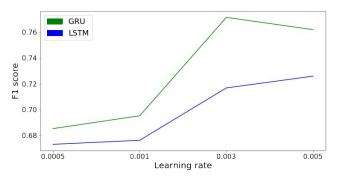
...

ht

Α

Xt


Recurrent Neural Networks



- Optimizer RMSProp
- Other network features
 - Dropout
 - Input weight sampling
 - Weight regularization
 - Reduce learning rate
- Final GRU structure:

Recurrent 1	128
Recurrent 2	64
Dense 1	32
Dense 2	1

F1 score variation with different number of neurons in recurrent layers

F1 score variation with initial learning rate

Overview

Preprocessing

Feature engineering

Data exploration

Algorithms

Results

Case studies

Data Innovation Lab | Maneuver prediction using vehicle sensor data | 06/08/2019

0.9264

- 4000

Results

1600 300
4000 3200 2400

0.7714

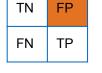
Lane changes	887
Non lane changes	4113

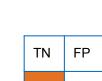
Model which predicts direction of lane change:

F1 score	Accuracy
0.7470	0.9014

Visualization

Edge cases

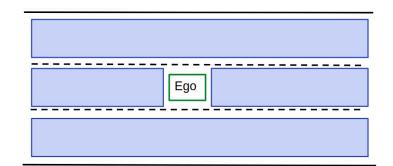

Driver overtakes and does not go right again


ΤN FΡ FN TΡ

Driver changes lane to left with no objects around

29

Clustering of drivers according to driving


Further improvements

behavioural patterns

Data improvements

- Self-representation of Ego
- Vehicles behind Ego

Overview

Preprocessing

Feature engineering

Data exploration

Algorithms

Results

Case studies

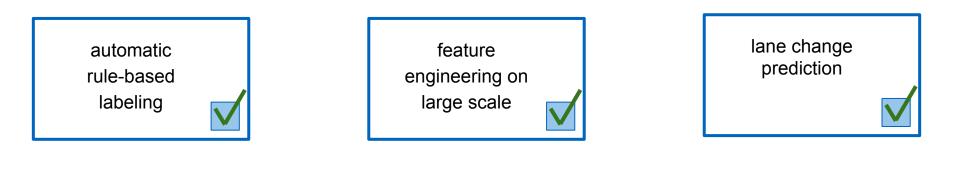
Direct transfer C

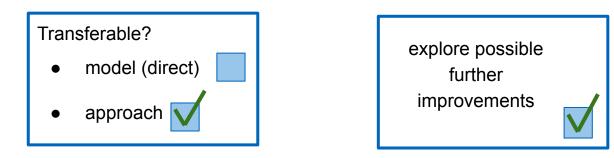
Case studies

China data

- Transfer our trained model directly
- Test transferability to geographically different environment

All features


- Train new model using features that were excluded like winker, distance to line, lateral acceleration
- Assert improvement by these features


Experiment	F1 score	Accuracy
Direct transfer China	0.2664	0.6276
Using all features	0.8828	0.9366

Conclusion

[1] <u>https://www.kisspng.com/png-car-advanced-driver-assistance-systems-driving-veh-3194115/preview.html</u> [visited on 20/07/2019]

- [2] https://michelleful.github.io/code-blog/2015/06/18/classifying-roads/ [visited on 30/07/2019]
- [3] https://colah.github.io/posts/2015-08-Understanding-LSTMs/ [visited on 03/08/2019]
- [4] https://discuss.pytorch.org/t/example-of-many-to-one-lstm/1728 [visited on 28/07/2019]
- [5] <u>https://towardsdatascience.com/k-means-clustering-identifying-f-r-i-e-n-d-s-in-the-world-of-strangers-695537505d</u> [visited on 03/08/2019]
- [6] <u>https://www.linkedin.com/pulse/random-forest-algorithm-interactive-discussion-niraj-kumar/</u> [visited on 30/07/2019]

Thank you for your attention! Questions?

