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1 Introduction

This project is carried out for the Data Innovation Lab WS 2017/18 in cooperation with BMW
Group. The aim of the project is to analyze and explain the energy consumption in one of BMW
Group’s plants, the Dingolfing plant, and understand its behavior. In addition, peak identification,
consumption pattern recognition and overall energy efficiency have been the main themes around
which the project is oriented. In this regard, three different data sets (namely ENERGO, IPS-T and
IPS-L, which will be introduced in detail later in this report) belonging to several parts of the plant
have been analyzed. After a lengthy phase of descriptive statistics and analysis of the data, predictive
models were built on the three data sets. These range from basic analytic models to more sophisticated
machine learning algorithms, depending on the need.
Introduction is followed by a more detailed description of the project and the setting. Later, detailed
descriptions of the aforementioned data sets are presented. For each data set, respective descriptive
analyses, as well as models and prediction methods are introduced. The evaluation of each method
can be found at the end of respective sections. At the end of the report, a summary and outlook of
the project can be found. Please refer to the Appendix for further plots, graphs and tables.

2 Motivation: Energy Transition and High Peak Load Windows

The demand for electricity in Germany varies over time. It shows peaks during the day and, in general,
seasonal effects, as well. In the time before and after the standard working hours, especially private
households, demand more electricity. Today, during the energy transition, the supply of electricity is
also unpredictable [3]. Until now, there is no practical and low-cost way to store electricity available
everywhere, which could compensate the gap between high electricity demand and low supply and
vice-versa [6].
Customers with an steady high demand for electricity, who are able to shift their demand of electricity
can benefit from an electricity costs reduction. For this purpose, they have to significantly decrease
their demand in the so-called high peak load window (HPLW)1. This is the time of the highest average
electricity demand of customers during a day. The HPLW are calculated and fixed for every season
and they have to be taken into account on every working day (except Brückentage, i.e. long weekends
and during the time from Christmas to New Year).
The goal of this project, to explore electricity data and uncover opportunities to leverage electricity for
cost optimization, is motivated by the following regulation for BMW: its highest demand for electricity
in a year within the HPLW has to be smaller than 90%2 of the highest demand for electricity outside
the HPLW of the year. The demand for electricity is always measured within an interval of 15 minutes.
The following tables show the exact time slots of high peak load windows for BMW in 2016 and 2017.

Year Month HPLW-1 Start HPLW-1 End HPLW-2 Start HPLW-2 End

01 04:15 pm 07:14 pm
2016 02 04:15 pm 07:14 pm

12 04:15 pm 07:14 pm

2017

01 07:30 am 08:59 am 05:00 pm 07:29 pm
02 07:30 am 08:59 am 05:00 pm 07:29 pm
09 04:15 pm 07:14 pm
10 04:15 pm 07:14 pm
11 04:15 pm 07:14 pm
12 07:30 am 08:59 am 05:00 pm 07:29 pm

Table 1: Start and End of the high peak load windows in 2016 and 2017

1This field underlies the legal restriction “Sonderformen der Netznutzung gem. §19 StromNEV”.
2Erheblichkeitsschwelle/ critical threshold: 10%
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3 Organization of the Project and the Dingolfing Plant

Organization of the Project The project was conducted by a team of 5 TUM students, 3 data
scientists and an energy manager from BMW, 2 representatives of the TUM Data Innovation Lab and
experts from the Leibniz-Rechenzentrum (LRZ) over a time period of 4 months. Due to the signif-
icant number of stakeholders involved, a structured working approach formed the prerequisite for a
successful progress of the project.

Upon receiving the first data set (ENERGO), technical issues needed to be resolved in the first place to
enable access to the data. Since all data sets coming from BMW contain confidential information, safe
storage was crucial. LRZ offers safe and powerful infrastructure and at the same time holds partner-
ship with TUM. LRZ’s infrastructure was put into disposition for this project by the Data Innovation
Lab, and was hence used to store ENERGO and all following data sets provided by BMW. LRZ also
offers web interfaces with RStudio server and computing clusters which were used for programming
tasks. Furthermore, the LRZ supported the project with their technical support and their expertise
in machine learning.

After a brief exploration stage with the first data set, 4 milestones were defined in agreement with
BMW:

1. Statistical exploration of energy data and outlier correction
2. Detection of relevant features to explain and forecast the energy profile
3. Using machine learning methods for data exploration and developing prospective improvements
4. Documentation of project

To get an understanding of the technical process, a plant visit in Dingolfing was organized by BMW.
After receiving two further data sets, IPS-L and IPS-T, the student team was regrouped in two sub-
teams so that each group could work in parallel on one data set. To ensure steady progress and discuss
open questions, independent weekly group meetings were held by the students as well as by students
together with the cooperation partners of BMW. Representatives of the Data Innovation Lab were
present during several student meetings to support the project with their mathematical expertise.

The Dingolfing Plant The Dingolfing production plant is the largest production site of the BMW
group in Europe: approximately 1,600 BMW vehicles roll off the assembly lines every working day.
The plant manufactures a wide range of cars: models of the 3 to 7 Series, as well as components
for BMW’s electric vehicles and car bodies for Rolls-Royce Motor Cars. In total, the location has a
workforce of over 17,500 people, plus 800 apprentices. Starting in 2018, the new 8 series and from 2021
on, the completely new, electric and autonomous BMW iNEXT will be manufactured in Dingolfing,
which will highly increase the importance of this plant [1] [5].
The plant is spread over different production halls. In the paint shop all the painting is done by
robots. Quality control and surveillance of the robots can only be done by humans. In the assembly
hall workers and robots work directly together. The shifts can differ in each part of the plant and also
work on Saturday is possible. As more than 85% of the produced cars are individual orders and are
already sold, the amount of production is extremely flexible and working hours will be increased when
the demand increases, as well. When a car is ordered, the customer receives a date, which is called
freeze day. This date is exactly 7 days before the production of the individual car will start and until
the freeze day the customer has the possibility to change his customization of the individual car. This
highly flexible manufacturing is made possible by just-in-time manufacturing.
Energy management is extremely important, as the whole production depends on the supply of energy,
not just as electricity, but also as compressed air or heated water. To have a clearer understanding: the
energy demand from Dingolfing plant can be compared to the one of a city with 250,000 inhabitants.
Power blackouts of as short as 500ms can already disrupt the production process and lead to severe
consequences. For these situations, Dingolfing is equipped with two diesel generators which then supply
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electricity for emergency components. The whole production will be stopped and just emergency lights
and equipment will be powered for approximately 30 min such that the plant can safely be evacuated.
Still, the German power grid is very reliable compared to other countries, so in the last 30 years there
were only four total blackouts in the plant Dingolfing.

4 ENERGO

4.1 Data Exploration and Electricity Supply

The electricity flow at Dingolfing is structured in a hierarchical way (cf. appendix, figure 43); the
three power stations at the top are connected to the medium-voltage power grid (power station 1,2 &
3). Followed by 17 medium voltage stations (MS) and 229 focus stations (FS). Every MS is assigned
to one specific part of the BMW plant in Dingolfing.
Each of these 249 stations has a unique identifier, the STDID. ENERGO data contains the energy
demand of the plant from January 2016 until November 2017. It contains one measurement for each
STDID every 15 minutes with its aggregated energy demand within this time span3. In this project
only energy in form of electricity is considered. In total ENERGO provides over 77m unique measure-
ments and the data has a size of more than 6 GB. The energy consumption of the plant is measured
multiple times, in every hierarchical level once. However, there are levels in which not the whole
energy consumption is recorded. This is due to the lack of measurement sensors, especially in the level
of the focus stations. The amount of measured electricity in the MS level is nearly complete.
Another interesting aspect in terms of energy management is the availability of internal electricity
sources. If there is no possibility of shifting the electricity consumption during the HPLW, the plant
can use internally produced electricity to reduce the overall energy demand from external sources.
At the BMW plant Dingolfing, there are two different internal electricity sources, photovoltaic sys-
tems (used for MS-9 (Assembly) and MS-12 (Dynamic center)) and combined heat and power systems
(CHPS). A new system produces electricity with two equal generators in MS-10 which is used in MS-5
(paint shop, cooling water, cooling, extreme cooling) and an older system supplies electricity for MS-2
(hardening shop).
The electricity demand of MS-5 can almost be covered by the internal electricity provided by MS-10.
Nevertheless, there is also the possibility to use external electricity provided by the power station,
which is illustrated in Figure 1. The external electricity supply is used to cover peak loads, but there
are some down times of the CHPS, as well, which can be seen in figure 45, in the appendix. In
2016 there were basically two major down times. One in march, where problems with the Technical
Inspection Authority (TÜV) occurred and in summer, when the temperatures were too high and the
CHPS could not be used.
Now, analyzing again the overall distribution of electricity demand in Figure 2, it is clear that the
electricity is not equally distributed among the MS. Every MS demands electricity, except MS-10,
which provides electricity.

Using the information about internal and external electricity sources, the overall electricity which
had to be bought by BMW can be estimated. The estimate for January 2016 until October 2017 is
720.93 GW, as illustrated in figure 3. Figure 4 shows the electricity demand per day. The smaller
electricity demand during weekends can be seen as well as a decrease during the Christmas season.
The EDA can also be used to visualize on which day of the week there is production. Summing the
electricity demand for all MS (except MS-10) within 15 minutes and grouping them by weekday, shows
the distribution as illustrated in figure 5.

The sum of consumed electricity of the MS within 15 minutes is on average the same during working
days and the weekend, respectively. But each day, the interquartile range differs. Another aspect is,
that in the box plot as outliers visualized measurements are not necessarily false values; e.g. one sees

3The value from ENERGO is given in kilowatts per hour (kWh), therefore to calculate the energy consumption within
15 minutes, the value from ENERGO has to be divided by 4.
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Figure 1: Electricity Supply of MS-5 Figure 2: Distribution of Electricity De-
mand

[GW] 2016
01/2017

-
10/2017

01/2016
-

10/2017

HPLW 10.31 16.23 26.54

Not HPLW 397.28 297.11 694.39

Total 407.59 313.34 720.93

Figure 3: Estimate of total energy demand Figure 4: Electricity demand per day

the low data points during the Christmas season, where the production is stopped. As well, before
and after Christmas the production was already reduced and at these days also the HPLW is active.
It can also be seen that, the average electricity demand during the HPLW is not significantly smaller
than outside of the HPLW. In terms of cost reduction, it is particularly important that the maximum
electricity demand during the HPLW is at least 10% smaller than the maximum during outside of the
HPLW, as explained in Chapter 2.

4.2 Outlier detection

For the project, the most important part of the energy profile is an anomaly-high (peak) consumption.
However, not every peak in the data were true measurements. Therefore, it was needed to set apart
true anomalies from wrong measurements.
During the analysis of ENERGO data, several types of wrong measurements were detected. The first
group includes impossibly huge values which may be followed by negative ones for compensation. The
second group consists of ”too long” and ”too short” measurements. If an error(e.g. wifi connection
problem) has occurred in the equipment, the energy consumption could be counted for longer than 15
minutes interval. For energy balancing, after this long measurement a short one usually follows. For
this reason, there would be consecutive wrong values. The third group contains missed data. This
category contains all lost values equal to -1 as well as some ”fake” zero measurements.
All these incorrect values caused by mistakes in measuring equipment. However, they all have a
slightly different behavior, therefore all groups should be treated separately.
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Figure 5: Distribution per Weekday.

4.2.1 Missed Measurements

The energy demand of the whole plant decreases significantly during weekends and public holidays.
The production on the plant is mostly stopped during these days. But some stations are still working,
or have a regular maintenance activity. All non-production days are preceded by a smooth decrease
in consumed energy, which is followed by a smooth increase during the day after.
In the ENERGO data, zero consumption does not only occur on weekends. There can be a single
zero in the middle of the day, which is unrealistic from the production side. Also, there can be a set
of consecutive zeros followed by a high value, which has a function of covering ”fake” non-production
time. All these wrong zero measurements were considered as a missed data together with the -1 values.
There were around 1% of missed values and 6.5% of wrong zeros in the data set.
Negative values might affect basic statistics of the data and incorrect high measurements can give a
wrong representation of peak loads distribution, therefore, it was needed to replace them. The first
idea was to check the level below Medium Voltage Stations. As one MS connected to several FS, it
can be possible to collect the data of the missed time interval on the FS level, then sum it up and
receive the real consumption on the medium level. However, on the FS level, error in a measuring
equipment occurred at the same time as on MS.
The second idea refers to the production cycle on the plant. If some working steps are always made on
the same weekday, it is possible to use mean energy consumption of identical days (e. g. all Fridays
of the previous month) to find the missed observations. A deeper analysis of energy profiles showed
that the production changes from day to day. Therefore, it doesn’t make sense to use the energy of
the previous days as a base for replacement.
In order to eliminate -1’s and wrong zeros without changing the distribution properties, it was decided
to replace them with mean values. Single missed values were replaced with the average of the previous
and following measurements. The consecutive missed values were replaced with a mean of the day.
The figure below represents the example of how this replacement works.

4.2.2 Too long/too short measurements

As per request of the company, the outliers in the data, that were the result of a malfunction in the
measurement equipment or wireless connection failure in parts or all of the plant were investigated.
This particular kind of malfunctions caused the equipment to measure for more than 15 minutes.
When the connection was restored, or the equipment realized that the previous measurement covered
more than 15 minutes, the consecutive measurement is programmed to compensate for the elongated
duration of the previous period, by covering a shorter period of time. Therefore, the expectation of the
sum of two consecutive ”too long” and ”too short” measurements are the same. These errors reveal
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(a) Wrong non-production time

(b) Arter replacement

Figure 6: Wrong measurements example

themselves by a pattern of a peak followed by a trough. In Figure 7 , we see an obvious example of
this kind.

Figure 7: Too long/too short measurement example

It may sound easy to treat these measurements as any other outlier. However, their particular character
of a peak followed by a trough makes it easier to isolate them. Therefore, in order to spot these errors,
4 columns for generated for every observation:

1. A column indicating if the observation was 3 standard deviations above the Moving Average
2. A column indicating if the observation following was 3 standard deviations above the Moving

Average
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3. A column indicating if the observation was 3 standard deviations below the Moving Average
4. A column indicating if the observation preceding was 3 standard deviations below the Moving

Average

A pair of observations were marked as too long/ too short measurements, only if the too long mea-
surement was 3 standard deviations above the Moving Average, the observation preceding the too
long observation was not 3 standard deviations above or below the Moving Average, the too short
measurement was 3 standard deviations below the Moving Average, and the observation following the
too long observation was not 3 standard deviations above or below the Moving Average. As one of the
main objectives of the project was to identify peak energy consumption, a more conservative attitude
was adopted in detection of outliers and errors.
This conservative approach was also influencing in the parameter tuning. Moving Average parameter
was set to 8, as a number smaller caused the average to be too volatile and a number larger was not
adaptive enough to the changes in consumption, especially during shift changes. The parameter of
the standard deviations were tested from 2 to 5, in decimal steps. The biggest change was in the
outliers of MS-50, due to the spiky character of the entire time series. In order to make sure no real
consumption data was not smoothed, the parameter around which the smallest change in the number
of outliers was observed was selected, namely 4. In total, 39 pairs were marked, 17 of which belonged
to MS-50.
A couple of ideas were introduced on how to treat these errors: Using Focus Stations to check if they
represent the actual behavior without the failure, fitting a linear model to predict the observations
preceding and following the pair and averaging the pair. Focus Stations displayed the same pattern
as the Medium Voltage Stations, as the cause of the problem was local, rather than hierarchical. In
order not to lose the information from the observations themselves, they were averaged.

4.2.3 Wrong Outliers

As already described in 4.2.1 and 4.2.2, the ENERGO data set contains some extreme outliers, which
are not caused by energy peaks but by wrong measurements. To find and correct these “untrue ”peaks,
it was mandatory to create one prepared data set.

Figure 8: Marking too many Peaks as Outliers
in MS-29 (Std Dev 3).

Figure 9: Marking only untrue Peaks as Outliers
in MS-29 (Std Dev 9).

For the detection of outliers, the standard deviation method was used as a general idea. The first
approach marked all energy values as outliers, when the difference between two consecutive values
surpass the threshold of 3 standard deviations. Because the energy consumption varies strongly over
a year, the standard deviation is not calculated over the whole data set but as a running standard
deviation. Hereby, the running window consisted of 48 values (representing half a day) before and
after the estimated value.



8 4 ENERGO

Additionally, to prevent too much smoothing of the data set by falsely correcting even properly
measured energy peaks, only values surpassing the 99th-percentile of the energy values over two
months are considered as possible outliers. So, only extremely high values can be detected. As can be
seen in Figure 8, this approach still marked correct peaks as outliers, though.
By optimization, it was found that the optimal benchmark for marking values as outliers, is a threshold
of 9 standard deviations (figure 9).
The so found outliers were then corrected by calculating the average of their previous and subsequent
value. Besides, the data set also contained some negative values. Since negative energy consumption
is unrealistic, these data points are set to zero.

4.3 Visualization

Proper use of visualization tools is fundamental for understanding of trends and behavior of the data.
As a team who had never worked with energy or BMW plant data, it was crucial to have a general
view of what happens during a day/month/year in a BMW production plant.

(a) MS-13

(b) MS-4

Figure 10: Energy consumption in two different stations during January of 2016. Shift changes,
weekends and holidays are easily spotted with a heat map. Low and high energy pikes are also evident
in this graph.

Such visual analysis is important to understand and detect patterns of certain areas in the plant. For
example, from Figure 10 it can be inferred that MS-13 station, Lackiererei, (see graph with stations
description 43), has a more steady work load throughout the day compared to MS-4, Karosseriebau,
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where there is a large work reduction during night time.

4.4 Correlation Between Focus Stations

The electricity flow in the plant Dingolfing is hierarchical. Each Medium Stations (MS) is split into
several Focus Stations (FS), and almost always one individual FS can be assigned to one MS. There
is a great number of FS which means, that there are many real measurement points in the plant. Now
the question arises, how the FS are correlated to each other. If the dependence structure is known,
one could e.g. use the data to identify measurement errors or if the sensors are very reliable one
could decrease the amount of needed measurement points and could use the dependence structure to
virtually calculate the electricity demand of the correlated FS.
When all electricity consumption is measured correctly, the electricity demand of the MS should
equal the sum of the electricity demand of the FS, as there is a hierarchical structure. Therefore the
relationship between the FS and MS can be assumed to be linear and the sample Pearson correlation
coefficient can be used as a measure of dependence.

MS-13. MS-3.

Figure 11: Correlation between FS of MS-13 and MS-3 in November 2016.

Analyzing the correlation of the FS for each MS in December 2017, the result can basically be grouped
in 3 categories: a) very high correlation of its FS, b) most FS have a low correlation (around 0-0.3)
and only a few FS have a higher correlation (0.7-0.8) and c) few correlated FS (0.4-0.7) and many
highly correlated FS (0.9 - 1). Interestingly, mostly MS for non-production parts of the plant (e.g.
MS-3 BIZ and kitchen) fall in category b). MS-13 shows a very high correlation among its FS, so it
is in category a). For both MS the correlation of its FS is compared in figure 11.
The plots show, that indeed in some MS, the FS are highly correlated and in other MS at least a
subset of FS show a high correlation. On the other hand, not every MS shows this pattern and one
would have to know in advance which FS are correlated and thus measure sensors could be removed.
Another aspect one should consider is, that all MS, except MS-13, show low correlated FS, the longer
the observed time intervals are. So analyzing e.g. MS-3 for January 2016 to December 2017, shows
that only a few FS are correlated between 0.8-0.9.

4.5 Findings and Conclusion

Analysis of ENERGO data set was the first step in the understanding of how this complex BMW
plant works and how energy is distributed over it. The main interest for the analysis was the MS
level. Using this data the energy profile of each production station can be investigated. By suitable
visualization of the data, the main patterns in production schedule were identified and most energy
consuming stations were found.
In order to avoid wrong statistical interpretation of the data, the real peaks were separated from the
wrong values, caused by mistakes in measuring equipment. Wrong values were replaced appropriately.
For the whole picture of energy consumption, internal energy resources of the plant were analyzed.
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Also, the correlation between MS and FS levels was estimated. All these findings are useful for further
analysis of more specific production data (IPS-T, IPS-L), for the building of prediction models, and
for the processes/production optimization.

5 IPS-T Data

The IPS-T data set contains information about production together with energy consumption on MS-
stations responsible for car body assembly. The production stations are called nodes and each node
is in charge of a specific operation for a single car model. There are 89 different nodes in the IPS-T
data set. For instance, node 330THL3 .SPS, is the station where rear left door for car model BMW
5 Series (G30) is assembled.
An advantage of IPS-T data set with respect to ENERGO, is that for each node there is information
about the energy consumed and the count of car bodies at a certain point in time; while in ENERGO,
there is no production data. The main disadvantage of IPS-T data set is that tracking of a specific
car around a plant cannot be done, since whenever a car is counted, only its model is stored instead
of a unique identifier. Besides, IPS-T covers much smaller time frames: IPS-T started at the end of
August 2017, ENERGO started in January of 2016.
Figure below represents the energy consumed by each node together with the number of cars passed
during one month. These plots show that not all nodes have a forward dependence between the
number of proceeded units and consumed energy.

Energy consumption of each node Number of units passed through the node

Figure 12: Production during one month

Summarizing, IPS-T data set can be used to analyze energy profiles when performing certain tasks on
different car models, as well as to identify which nodes are independent of units produced.

5.1 Pre-processing and Exploratory Data Analysis

Raw IPS-T data came in a very long table, where a new row was added every time there was an
increase of (roughly) 0.1KW in accumulated energy consumption. At the same time, another row was
added every time (roughly) one car was dispatched from a working station, i.e. node.
The first step taken in pre-processing was shortening the table by accumulating all car units and
energy measurements in ranges of 15 minutes. Just like in ENERGO data, this lead to 96 energy
measurements per day as well as car unit counts. This modification allowed to reduce the size of the
data-set, and lead to clearer plots without loss of detail.
Simple scatter plots on every node after the first step showed presence of outliers that were several
orders of magnitude away from most of the data. Hence, the second step in pre-processing was outlier
detection and removal. Each node’s data were treated as samples of separate populations with their
own corresponding statistics. The method chosen for outlier detection employed the median and MAD
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(median absolute deviation) of each node since they are more robust statistics than mean and standard
deviation [2].
In the end, all measurements more than 10 MADs away from the corresponding median were smoothed
out by taking the average of the two previous and two posterior measurements.

Figure 13: Histograms displaying energy profiles of 24 randomly picked nodes.

Figure 14: Scatter plots showing the relationship between car units and energy consumed for 24
randomly selected nodes.

Finally, it was possible to observe the energy profile of each node, by analyzing their histograms. A
first look at these graphs suggested that nodes are not completely independent from each other and
could be clustered by their energy profiles. Additionally, a glimpse at scatter plots of car units vs.
energy showed that in many cases, as expected, there is a relationship between the amount of car
units passing by a node and the energy consumed by it.
Following this initial analysis, the team decided to apply regression and clustering models on IPS-T
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data for further information discovery.

5.2 Linear Models and Feature Selection

Two different implementations of linear regression in R and Python were used. Furthermore, different
features combinations were applied on these models to obtain the results.

IPS-T is the time series data, so it is possible to extract a lot of information from date and time.
Every day of the week or hour of the day can be coded by the corresponding average of energy
which was consumed on this day of the week or hour. Therefore, categorical features such as day
of the week were coded by an average value of the target variable. In this case, it is important to
ensure that the average value is calculated only within the train data set (or within the currently ob-
served fold in the cross-validation), otherwise, it may bring information about the future to the model.

To estimate the generalization ability of the solution cross-validation was used. Time series data is
characterized by the correlation between observations that are near in time. Cross-validation tech-
niques such as KFold and ShuffleSplit would result in meaningless correlation between training
and testing instances on time series data. To avoid it, TimeSeriesSplit from sklearn can be used
to cross-validate time series data samples that are observed at fixed time intervals. This class is a
variation of k-fold which returns first k folds as train set and the (k + 1) th fold as test set. Unlike
standard cross-validation methods, successive training sets are super-sets of those that come before
them (Figure 15).

Figure 15: Time Series Cross-Validation

The initial idea is to linearly relate Energy Consumption to the Number of Units processed per 15
minutes. In addition to the number of units passed through the node, the lags of the target variable
can be used. In presented model lags from 96 to 193 were used. This means that energy consumption
of the previous day for each 15 minutes interval used as a variable. Models were built using stats

package in R and sklearn in Python. Finally, the models are evaluated and compared using Mean
Absolute Error and Mean Absolute Percentage Error.

Based on the different feature combinations, three different sets of the parameters were used for
linear regression model:

1. Lags of target variable + is weekend + mean of day + mean of hour
2. Number of units + is weekend + mean of day + mean of hour
3. Number of units + lags of target variable + is weekend + mean of day + mean of hour

The time series plots on the figure 16 shows the prediction for one node. The left one represents the
forecast without using units as a feature, the right one – with units. Prediction based on the LR
model depicted in red, compared to the real values in blue having the number of observation as the
x-axis (one observation is one 15 minutes interval), and the energy consumption as y-axis.



5.3 Clustering Nodes 13

Figure 16: Linear regression model predictions

It seems that the combination of lags and units, as in the third set, should give the best result, but
for 75 nodes over 89, it works worse by 1,6% in average than set number two. Table 2 shows the MAE
of predictions on holdout part of the data.

Node
Mean Absolute Error

Features Set 1 Features Set 2 Features Set 3

330RH23 .SPS 7.9188 0.3102 0.3161

330VB03 .SPS 7.3540 0.2800 0.2868

330TVL2 .SPS 5.5037 0.2310 0.2325

330HA01 .SPS 4.9697 0.3403 0.3658

Table 2: Mean absolute errors of predictions

Afterwards, more production schedule related feature were tested. In order to have a better fit, features
Shift and Day of Week were introduced. Most models were improved or not affected by this addition.
Out of 89 Nodes, 75% of the nodes had a MAPE lower than 14.1%. Every node except one had a
MAE lower than 1 kWh.

5.3 Clustering Nodes

The linear models in most nodes performed very high. Therefore, in order to extract the most infor-
mation from the data, the 6 nodes with low correlation in the linear models were further investigated
(See Figure 17.) One of the low-performing nodes was a dryer in the body shop. From our visit to the
plant, and the talks with the company, it has been pointed out that dryers consume energy related to
the duration that they are working, and not the number of units they process.

For simplicity, the shifts with no units were taken under consideration, namely the night shifts. For the
98 complete days that there are, every night shift between 22:00 and 06:00 were extracted. Therefore,
for every day, there were 32 observations of energy consumption. In particular, the ramp-up behaviors
were under scrutiny, the greatest energy consumption drivers through the night.

From this plot 18, it can be observed that there are several clusters of behaviors through the night.
These clusters can be obtained via an algorithm that would group similar behaviors through the night
together. The data could be handled as 98 observations to be grouped, with 32 dimensions. However,
usual clustering methods do not take into account the fact that the data at hand is a time series data,
which requires a special understanding of the dimensions. Therefore, it is important to look into Time
Series Clustering. Time Series Clustering focuses on the similarity - or dissimilarity - between curves
and groups curves together, rather than points in a 32-dimensional space.
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Figure 17: Correlation between Energy Consumption and Units for every node

Figure 18: Energy Consumption during 98 nights for the dryer node

Consequently, it was important to determine a suitable dissimilarity measure to feed in the clustering
algorithm. Dissimilarity is a general term for a measure of distance between two observations under a
certain criterion. Then, using the observations, a dissimilarity matrix is generated. Afterwards, this
matrix is fed into a clustering algorithm, resulting in the observations grouped in different clusters. For
the Night Shifts Data, 3 different dissimilarity methods were used to generate a dissimilarity matrix.

1. Correlation: Computes dissimilarities based on the estimated Pearsons correlation of two given
time series.

2. Frechet Distance: Computes the infimum of maximum distances between two curves
3. Dynamic Time Warping: Computes optimal match between time series regardless of their ac-

celeration. Used prominently in speech recognition.

Each method is used to create dissimilarity matrices. These dissimilarity matrices are then used to
create dendograms. The clustering method is chosen as Hierarchical Clustering, as the number of
clusters, or the number of observations per cluster is not intuitive from the data. Below, the plot of
the dendogram generated by the dissimilarity measure Fréchet Distance can be seen.
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Figure 19: Dendogram using Frechet Distance

For each method, 5 or 6 clusters were the most sensible result. Then, these clusters were plotted
separately, to closely examine the consistency of behaviors captured by the clusters. Below plots show
the 6 clusters using the Fréchet distance method. They show the different behaviors in the energy
consumption, irregardless of where the drops and the ramp-ups start. Taking a close look at the
weekdays that are present in each cluster, following conclusions are reached:
Cluster 1: Regular workdays, (Tue - Thu) except any holidays. During these nights, energy con-

sumption starts from a high value, as there was production before this night shift, followed by a
drop during no production hours, followed by an increase in consumption due to the beginning
shift

Cluster 2: Fridays, or any day that had a production shift before a night and no production on the
next day. This group includes a Monday followed by a holiday (3.10.2018), which shows how
robust the clustering is to the production

Cluster 3: Days during which the dryer was almost completely shut down. These days are regularly
Saturdays, but also include bigger holidays.

Cluster 4: Sundays, or any night that did not have a production shift before the night, and a pro-
duction shift in the following morning. This cluster is symmetrical to Cluster 2.

Cluster 5: This cluster groups the times when the dryer was on throughout the night. The highest
average energy consumption is produced by nodes in this cluster.

Cluster 6: This cluster groups 3 nights that display a somehow different behavior than the others.
It would have been more suitable if these observations were also in the first cluster. However,
this could also be representing a different behavior that we do not have enough samples due to
the short duration of the data.

5.4 Results

Linear models were able to predict energy consumption with low error rate, which is nice for production-
solutions because these models are easy to implement and they have interpretable results. Despite the
good performance of the linear regression model, it is still possible to improve it by playing with the
features. It also will be interesting to try Random Forest and XGBoost and compare the results.

Clustering was used to classify energy profiles of 6 nodes during the night shifts. As a result of this
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Figure 20: Clusters 1-6 using Frechet Distance

exercise, it was possible to group energy profiles. A main indicator proved to be the day of the week
(or presence of a holiday), as ramps ups and downs depend on this factor. It remains to be discussed
if, since ramp ups and downs have to happen, it is possible to minimize the time between the ramp
up and the first car body being processed.

6 IPS-L Data

6.1 Data Exploration and Basic Descriptive Statistics

The data set IPS-L provides the logistic perspective of the cars in the paint shop (MS-13). This
means that every time an individual car passes a production station in the paint shop the time, the
car, its color, variant and the station itself are tracked. For November and December 2017 the data is
complete and for April and October 2017, respectively, only a few cars were tracked.
After removing duplicated measurements there are in total 323,369 unique measurement points from
46,547 individual cars in the IPS-L data. In the data, 102 different colors were used and 982 different
body specifications (variants) were produced. The variant of a car is a more specific description than
only the car model; It e.g. describes if the car has 3 or 5 doors, etc. 943 variants were tracked only
one time in the data and for these cars the painted color is unknown.
The distribution of colors reveals an interesting fact. Even thought a huge number of different colors
were used during the observed time period, more than 90% of all cars were painted in one of just 14
colors. The same holds for variant. Over 90% of the cars is one of just 18 different car variants. This
shows the high flexibility the plant Dingolfing provides.

In the paint shop there are 36 different working stations. They are identified by a unique abbreviation
and its description. In total there are 4 different production lanes, on which cars are painted and
dried afterwards. These lanes are connected at the beginning and in the end. All cars start at Fueller
Decklack and the production flow ends in the warehouse. Some of the production stations can be
categorized into similar groups. For example there are eight working stations which denote the drying
process (Auslauf Trockner: Z20554x0). To get a better impression how the stations are connected,
graphs, showing the production path, are created in the next step. Later the influence of color or
variant on the production flow will be analyzed.
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Figure 21: Distribution of Colour Figure 22: Distribution of Variant

6.2 Visualization

The EDA of the IPS-L Data motivates to visualize the sequence of production stations each individual
car takes. The visualization is done using the R package iGraph and NetworkD3. iGraph plots graphs
and has graph algorithms implemented. NetworkD3 creates interactive graphs, where the view of the
model can be changed by dragging and dropping vertices of the network. This is especially helpful
when many cars are shown in one single graph and their production flow differs.
As mentioned in the last chapter, some working stations can be divided in groups. Now, by comparing
the production flow of the different colors and variants, one remarks, that basically the sequence of
these groups follows the same pattern. All cars start with Fueller Decklack (Z2041) and the last
station will be the warehouse (Z2080, Z2081). This is illustrated in the following example, where the
production flow of all 2,425 cars, with the variant 2979886 which were build before December 2017, is
analyzed.

PF of Variant 2979886 PF of Color
Spacegrey Metallic

PF of Color
Atlaszeder Metallic

Figure 23: Comparison of Different Production Flows

Nevertheless, the production flow of a certain color or variant can highly vary. One reason for that
is that e.g. some colors need more coats of lacquer than other colors do. Here, the sequence of the
two colors Spacegrey Metallic (50 cars) and Atlantic Cedar Metallic (154 cars) are compared. For the
first color only a few stations are used and the Atlantic Cedar Metallic needs many more production
stations. One sees as well, that some of the production stations are used several times by one car as
e.g. they need more coats of lacquer (e.g. Z2055030).
Another aspect can be visualized. By aggregating the production steps per hour, it can be seen that
at the paint shop there is 24 hour production on 5 days per week. As well one can see that the amount



18 6 IPS-L DATA

of production is decreased during the night. This corresponds to the information provided during the
visit to the plant. At the paint shop, there are three shifts, from 5 am to 1 pm, 1 pm to 9 pm and 9
pm to 5 am. The night shift can clearly be identified using the plots in figure 24. As well one can see
the production stop in the week of Nov 1st, as it was public holiday. There is also a sudden decrease
in the production on Dec 7, which will be analyzed in chapter 6.4. Additionally, the heat map shows,

Figure 24: Number of Production Steps
within 15 Min

Figure 25: Comparison between Number of
Production Steps and used Electricity

that the number of tracked production stations is not constant for every hour of the day which can
bee seein in figure 26. It decreases during the night, but there are same regular drops e.g. at noon as
well. This motivates to investigate, if some production stations are used more frequently at a specific
time point of the day or if it is just random.

Figure 26: Distribution of Number of Production Steps by Working Station

6.3 Mapping to ENERGO Data

After receiving the IPS-L data set, there were now two data sets available for data exploration:

ENERGO: containing information about the energy consumption in the BMW factory in Dingolfing
IPS-L: containing information about production steps in factory building MS-13 (paint shop)

To meet the goals of detecting correlations between production program and energy consumption
as well as to develop models for the prediction of energy consumption, both data sets needed to be
merged. Since the time measurements in both data sets differ, data preparation was required.
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As described in section 4.1, in ENERGO energy usage is measured as aggregated energy consumption
over 15 minutes time intervals. In contrast, the IPS-L data set contains the timestamps when a car
crosses a light barrier of certain production step, e.g. top-coat lacquer. To merge both data sets, each
timestamp in IPS-L and its associated production step is assigned to the corresponding 15 minutes
interval of ENERGO. This joint data set was then used to construct and verify hypotheses in IPS-L
(see figure 27)
As the student group was told during the plant visit in Dingolfing, painting colors need to be stored at
continuant temperatures to guarantee high-standard and constant results. Therefore, the influence of
weather on the energy consumption is also investigated in section 6.5.1. Accordingly, the joint data set
was expanded by the weather data for November 2017. The data, taken from meteomatics.com, are
precisely measured for the GPS coordinates of the BMW factory in Dingolfing (48.644217, 12.477284).
The weather data contain 3 columns (figure 28):
average wind speed over last 15 minutes (in km/h), average temperature within last 15 minutes (in
◦C) and radiation within the last 15 minutes (in kW/m2).

Figure 27: IPS-L and ENERGO merged. Figure 28: Weather Data
merged with ENERGO.

6.4 Time Differences at Main Nodes

As seen in figure 23, cars of a certain color or variant do not have a unique production flow. An
obvious reason is, that it can be chosen between stations of the same category which fulfill the same
production task. To analyze how long the production between two major stations takes, now only
the time span between two production nodes of the station Z2041, Z2051, Z2061, Z2080 and Z2081 is
considered. Additionally, only cars which are in two subsequent nodes on the same day are taken into
account, to exclude possible shift breaks.
Analyzing how many production steps per time interval were made, one clearly sees an anomaly
December 7 2017, from 2 p.m. until 4 p.m., where almost no production steps were tracked. There
are two possibilities what could have happened. No data was tracked due to either a production stop
or a data recording problem. An obvious check would be to look at the ENERGO data in order to
identify the amount of demanded energy during this time slot. But the ENERGO data for December
2017 is not available. To analyze what might have happened, the production of the previous days will
be compared to the production of Dec 7 2017. In detail, the distribution of the time spans between
two nodes will be compared. In order to create equal comparison groups, for Dec 5, 6 and 7, only
the measurement points from the time windows noon - 1 pm and 6 pm - 7 pm are used. For the
computation of the time spans, only time intervals are considered, where two subsequent production
stations strictly follow the given sequence Z2041, Z2051, Z2061, Z2080/Z2081. E.g. when only the
measurement for Z2041 and Z2061 were recorded, no time interval is taken into account, as the time
point for Z2051 was not tracked. Like this the real production span is not falsified. The time span of



20 6 IPS-L DATA

the observations has to be chosen carefully. When the interval is too big, too many cars before and
after the missing data window are measured and the distribution of productions spans will be wrong.
When the interval is too little, it might happen that no car is tracked.
In the following two plots, the distribution of time spans between each major station and its subsequent
station is compared for Dec 05, 06 and 07. One can see, that the distribution of time spans for Decklack

Figure 29: Dec 5 Figure 30: Dec 6

Figure 31: Dec 7

Figure 32: Distribution of Time Difference at major Stations.

is significantly higher on Dec 07 than usually. As well for ”Fueller Decklack” there are more cars with
a longer time spans than usually and also for ”HRL Eingang Geb. 53”, the distribution of time
spans is significantly longer. Therefore it took longer for significantly many cars to move from one
production station to the next one. However, on this day there was no change in how the production
is done. Therefore, it can be assumed that the cars were waiting inside the stations and that there
was a production stop from Dec 07 2 p.m. to 4 p.m.
An EDA of the time span between two major stations in dependence of the used color or variant,
shows than an influence of these features is visible. Mixture models are now build, to analyze the
interaction of color and variant in a more detailed way. Therefore for each unique car both attributes
are merged and used as a new feature. There are over 100,000 possible combinations of Color and
Variant in our observed data. Interestingly, there were only 720 different combination used and over
50% of the observed cars are one of 39 combinations of color and variant. Now the same time span
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analysis as before is done. The result in figure 35 shows, that the same color used for different variants

Time Span at Station Z2080 Time Span at Station Z2081

Figure 35: Comparison of Time Difference to Next Station for Most Used Mixed Models.

has a different distribution of time spans between the major stations.

6.5 Models to predict Energy Consumption

After analyzing and visualizing the IPS-L data in the sections above, the next step in the project was
to apply the ENERGO and IPS-L data sets for predicting the future energy consumption. After some
research and discussions about promising methods for such tasks, the following machine learning and
statistical methods were considered for further examination:

1. Train a Neural Network
2. Regression Analysis
3. Developing a Random Forest

As described in 4.1, only for November 2017 complete monthly data were available. Accordingly, the
data set is significantly too small to train and validate a neural network architecture. Therefore, this
approach was dismissed for the project. The following paragraphs explain the results of the regression
analysis and the random forest method in detail.

6.5.1 Linear Model

At the beginning of the prediction process it was planned to start with a mathematical model provid-
ing a quick and flexible implementation, to rapidly test if relationships between energy consumption
in the paint shop and different production features, e.g. car type, car color, exist. Hence, a linear
regression model was chosen as benchmark model best matching the described requirements.
Considering the huge amount of parallel activities in a factory, it was quite unlikely from the beginning
to find a perfect linear relationship between certain features and energy consumption. Nevertheless,
this method is still very meaningful:
Even if the relationship between features and energy consumption is not linear but e.g. logarithmic
or exponential, the existence of the correlation would still be visible in the slope. Consequently, a
found linear correlation between features and energy consumption can be used as a backtest for the
accuracy of a more complex and nontransparent models (e.g. neural networks).
Before the prediction started some data preparation was needed in advance. As it has been shown
in section 6.1, the 17 most produced car models and 14 most painted colors represent over 90% of
all produced car types and car colors respectively. To reduce the complexity of the data set, only
these main colors and car models were concerned for further prediction. In addition, since factory
building MS-13 (paint shop) contains a huge amount of production steps, which are independent of
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the painting process, like storing of cars, only data from the painting station, “Einlauf ”, were used
for the prediction.
As a first step the intuitive assumptions of linear correlations between the features color and car
model respectively and the energy consumption were analyzed. The results in the table below show
that both color and car model are statistical significant features for the energy use of MS-13 (paint
shop). Hereby, both F-value and R2 suggest, that the car model seems to be slightly more relevant
than color.
During the plant visit in Dingolfing the energy manager of BMW explained that in the process of
painting the change of colors would cause an extra energy need. Using this information, the effect of
color changes and car model changes were investigated. With an R2 values between 10% and 12% and
F-values above 200 (see figure 36), the information of the energy manger were supported by the data.
Discussions about the production process led to the assumption that the most relevant factor for the
energy consumption could be the number of working steps, i.e. painted cars. This indicator reached
by far the highest F-value and R2 value. Moreover, in a model containing all mentioned regressors, the
number of working steps was the only regressor with statistical significance. To validate this result,

Figure 36: Results of Linear Regression.

a binary case for the feature number of working steps was developed. In a binary case, the regressor
is either fully considered in each regression step or not considered at all. By doing so, it is easier to
investigate its effect.
Therefore, the regression was repeated, where very few production steps (1 to 5 steps) are assigned
with a 0. In contrast, a high number of production steps (19-22 steps) are assigned with 1. The follow-
ing regression led to almost a doubling in the R2 value and the adjusted R2 value (40.25% and 40.1%
respectively). This result strongly supports the assumption that there exists a correlation between
the number of working steps and energy consumption.
During the visit at the plant in Dingolfing the student team learned that painting colors need a con-
tinuant temperature to ensure a high-standard and constant result. Therefore, the idea was developed
to investigate whether the weather influences the plants energy consumption. As described in section
6.3, the weather data of November 2017 for the location of BMWs factory in Dingolfing were used
for the regression. To examine, whether and which weather feature affects the energy consumption,
several linear regressions were conducted. The results are listed in the table below. It is indicated
that temperature and wind speed are statistically significant for the energy use. In contrast, with a
p-value of 0.8781 and a F-value of 0.02353 (figure 37), the assumption that radiation effects the energy
consumption can neither be rejected nor confirmed.
After examining the significance of certain regressors, the last objective of this projects regression
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Figure 37: Results of Linear Regression on Weather Data.

analysis was the prediction of future energy consumption. Firstly, 80% of the data from the data set
were randomly picked for the training set, while the remaining 20% of the original data set formed
the validation set.
As shown above, with a R2 value and an adjusted R2 value of 24% and 23% respectively the final
model in figure 36 was the statistically most significant one, containing the 3 features color, car type
and number of production steps. Therefore, this model is used for a first prediciton.
The accuracy of the prediction is measured by the root-mean-square deviation (RMSD), which is 112.3
kWh. With an average energy consumption of 1426.4 kWh, the prediction error is about 7.8%.
Since there exist many mathematical models, which use the previous value of the dependent variable
to calculate the new value, e.g. Wiener Process, this idea was adopted. Consequently, the average
energy use of the previous day was introduced as a new regressor. For the now updated model the
previous energy consumption was combined with the feature number of production steps, which was
the most statistically significant feature so far.

EnergyUse = β0 + β1AverageEnergypreviousDay + β2WS (1)

Model 1 has a R2 value and an adjusted R2 value of 33.3% each. Additionally, the model also has
a lower RMSD of 92.5 kWh, which corresponds to a prediction error of about 6.5%. These results
indicate that the energy consumption of the previous day is statistically significant for the current
energy consumption.

6.5.2 Classification

In MS-13 the information about the demand for electricity is quite aggregated, both, in terms of time
and location. Contrary to that, the IPS-L Data provides a detailed overview of the cars properties,
like e.g. color, and the time point they were painted. Therefore another idea is to analyze the rela-
tionship between the time point a car with a certain color and variant was painted and dried. It can
be assumed that these production tasks are the most energy-intensive tasks in the paint shop.

Predicted
HPLW not HPLW

Observed
HPLW 1259 14

not HPLW 7924 177

Figure 38: Fall

Predicted
HPLW not HPLW

Observed
HPLW 613 54

not HPLW 2365 240

Figure 39: Winter

Figure 40: Result of the classification as confusion matrix.
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The gained information from the EDA figure 26 motivates to investigate if a car of a certain color and
variant is always painted at a certain time point of the day. For the classification a random forest
was chosen, it generates different uncorrelated decision trees. Its advantage is that it trains very fast
on large data sets and its decisions are understandable (in contrast to e.g. a neural net). For the
implementation the R package RandomForest was used, as it works with categorical features, as well.
To measure the accuracy of the classification, the data set was randomly split in a training set (80%)
and a test set (rest of the data, 20%). The model was build on the training set. On the test set
the classification through the model for each observation and its observed value could be compared.
A first try to classify the time point of a day (divided in 15 min intervals) using the features color
and variant only showed a weak relationship (cf. appendix figure 44). Clearly, in this example the
difference between two 15 min intervals usually is not significant enough for a classifier to identify it.
Theoretically, a better criterion for the grouping is, whether a measurement was during the HPLW
or not. This means, if a special color or variant is on purpose not painted during the HPLW, will be
analyzed. A reason for this could be, that an increase of electricity consumption during the production
of a certain color or variant is already known. As the HPLW for fall is shorter than for winter, both
classifications are made independently in order to determine if an effect is visible. The result in the
confusion matrix 40 shows, that indeed a differentiation can be made and that some colors and variants
are classified explicitly during the HPLW or not HPLW. However, in both cases the classifier yields
a high amount of false positives. This can be caused by the extreme imbalance of the classes. The
data points measured when the HPLW is active, are only 6% and 10%, respectively, of the whole
data set. A resampling of the data, where the under-represented was duplicated and over-represented
group was randomly decreased, was not successful. Further techniques to improve the classification in
imbalanced groups are discussed in [4].

For the classification the 4 stations ”H41 WLx Einlauf” are used as a reference point, as the electricity
demand should be the highest at this working stations. As well different time lags were used, but they
couldnt improve the result. The result of the classification cannot confirm the thesis, that different
colors or variants are on purpose not painted during the HPLW. Even though the IPS-L data provides
a detailed view of the logistic perspective in the paint shop, these information cannot be used to
identify which features lead to a higher electricity demand.

6.6 Color Clustering

The regression in 6.5.1 has shown the statistical significance of number of color changes for the energy
consumption. Therefore, the first objective was to examine the painting chronology to determine
frequent color combinations. If these frequent painting sequences contain combinations with numerous
color changes, this would indicate that there would exist potential for energy savings by optimizing
the painting order.
Like in section 6.5.1 the data set was reduced to the 14 most used colors to scale down the dimension
of possible color combinations. To find frequent color combinations different clustering methods were
applied. The popular approaches of K-Means (clustering by numerical values) and K-Modes (clustering
by categorical values) were implemented. To apply both methods a corresponding matrix needed to
be developed. Hereby the matrix is of dimension 14×28 for K-Means and 14×29 for K-Mode. The 14
rows represent the 14 most used colors in the examined time interval. Columns 1 to 14 represent the
previous colors to each row and columns 15 to 28 the subsequent colors to each row. So fields are the
aggregated counts, how often a certain color combination appears. For example, if at an investigated
time point color 5 is painted and the previous color was 3 and the subsequent color is 2, then the
fields (5,3) and (5,14+2) of the matrix would be increased by 1. For K-Mode this 14 × 28 matrix
has been expanded by adding a new column 1, which contained the categorical information about the
color (i.e. 1-14). According to the structure of the 2 matrices, K-Mode and K-Means were meant to
cluster frequent color combinations.
Both clustering methods could not find clusters containing more than one color, so each color forms
its own cluster. The results of K-Mode and K-Means are supported by the figures 41 and 42. The



6.6 Color Clustering 25

histograms show the distribution of previous and subsequent colors for the 14 colors. All histograms
are clearly unimodal distributed, which leads to the conclusion that colors mostly follow themselves,
which reduces the number of color changes. Therefore, it can be inferred that the painting sequence
is already optimized with regards to color.

Figure 41: Histograms of Color Sequences for Colors 1-4.

Figure 42: Histograms of Color Sequences for Colors 5-7 & 9.
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7 Conclusions

The main goal of the project is to predict the energy consumption on the BMW plant. Energy con-
sumption of the plant must be reduced during the peak load windows. However, energy consumption
is influenced by many different parameters and peak loads usually occur spontaneously.
The most meticulous part of the project was the data explanatory analysis. Three different datasets
were examined for a better understanding of the production processes, their connection to each other,
and their influence on the energy demand of the whole plant.

7.1 Results

The mapping of the ENERGO data set to IPS-L showed that the used aggregation of 15 minutes and
the division the the FS are too imprecise for mathematical modeling. Therefore, it can be inferred
that different data sets showing the energy consumption should be taken into account.
Secondly, several energy relevant features could be detected by regression analysis (e.g. number of
working steps and color) and were used for predicting future energy consumption. The influence of
external effects (e.g. weather) on the energy consumption was proved.
Color clustering showed that the significant feature ”number of color changes” is already optimized in
the production process by the avoidance of high frequency color changes.
The machine learning approach by a random forest indicate that the features color and variante are
not sufficient to determine if a car is in a HPLW.
For IPS-T dataset, linear models were able to predict energy consumption with low error rate. When-
ever there is a predicted peak during HPLW, the production schedule can be altered to avoid the
peak. Clustering was used to classify energy profiles of 6 nodes during the night shifts. As a result of
this exercise, it was possible to group energy profiles. For every cluster, there could be an energy con-
sumption reduction within the cluster by optimizing the schedule of the ramp-ups using the minimum
energy profile within every cluster.

7.2 Outlook

For IPS-T model, more data would be necessary to make sure that the model is accurate along the
year. In addition, a production pipeline can be created to make predictions on a regular basis. In
order to analyze and predict the peaks better, all peak loads should be logged. These markers can
then be used to formulate a classification problem. The production line can be mapped to the energy
consumption data better, in order to extract more detailed information.
As to what it respects to the future of Energy peak prediction in BMW, it is valid to suggest to replicate
some of the techniques or algorithms used to predict energy profiles in other production plants. In
spite of data structures being likely changing from one plant to another, the data processing pipeline
could be re-utilized. Also, being Dingolfing one of the biggest BMW plants, there are no hints on why
the same algorithms wouldn’t perform well in production plants of lower complexity.
The IPS-L data provides the view of the paint shop MS-13. In the BMW Plant Dingolfing, there is a
second paint shop, MS-5. In MS-5, both, heat and cooling is needed at the same time, which makes
this MS to the MS with the highest electricity demand (c.f. figure 26). Chapter 4.1 already focused on
its electricity demand and the availability of internally produced electricity. In IPS-L, there are five
working stations which indicate an exchange of cars from MS-13 to MS-5 and vise versa. Here a further
investigation should be concerned. According to information provided during the visit to the plant,
the same technologies (e.g. same kind of paint robot) are used in the plant Leipzig, with a different
setting of parameters. Here, a good comparison with different parameter settings and the therefore
resulting electricity demand can be made over a longer time interval. If further monthly IPS-L data
would be available, this information could be used to apply state-of-the-art machine learning methods,
as e.g. neural networks (c.f. chapter 6.5). For these models could be used to test the presented findings
and predict an energy consumption.
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Legende:
MS5B = Bezug MS5 von der Zentrale
MS5A = Abgabe MS5 an die Zentrale
MS10B = Bezug MS10 von MS5
MS10A = Abgabe MS10 an MS5
Leistungswerte sind 15 min Maxima
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Figure 43: Energy flow in the plant Dingolfing.

Figure 44: Predicted vs. Observed Values of the Classification.
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Figure 45: Energy Demand of MS-5.

Figure 46: Energy demand of MS-13.


