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Abstract

Advanced driver assistance systems (ADAS) are one of the dominant topics in road safety
in recent years. In order to describe the impact in individual driving situations, a suitable
classification of the traffic situation is essential. In this work, we will focus on the intention
of the driver and develop an approach for lane change prediction based on naturalistic
driving studies (NDS) conducted by BMW. We use data from test vehicles and predict the
probability of a lane change through the positioning and movement of the vehicles in the
surrounding. How the driver behaves in the vehicle and the vehicles he can see in the rear-
view mirror, we deliberately neglect here. In order to take cultural and infrastructural
influences into account, we implement our model on German data only. In a preliminary
step, we develop a naive algorithm to identify lane changes in a Big Data environment.
With this automatically generated ground truth, we create labels and randomly validate
them with videos. Due to the complex patterns with spatial and temporal dependencies,
our model uses time series as input and predicts through engineered features whether a
lane change will follow or not. We use different machine learning techniques like Ran-
dom Forests, Support Vector Machines (SVM) and Recurrent Neural Networks (RNN).
With Random Forests and SVM, we create baseline models and apply feature selection
techniques. Then, we improve our efficiency implementing a RNN model.
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1 INTRODUCTION 1

1 Introduction

The range of functionality of advanced driver assistance systems (ADAS) and their num-
ber has increased drastically in recent years. Due to the demand for highly automated
driving (Level 2 to Level 5, SAE-J3016), this trend will persist in the upcoming years.
Such systems are also meant to support the driver and particularly taking control in
potentially dangerous situations. These situations often correlate with active maneuver
like lane changes. To provide ideal support for the drivers and assess the interaction of
ADAS within traffic scenarios, it is essential to predict the driver’s intentions as a part of
the situation definition. One possibility to tackle this issue is conducting driving studies
with measurement equipped probe vehicles. Naturalistic Driving Studies (NDS) collect
real-world traffic data of minimally influenced driving behavior and take place in various
countries.

Predicting the intention of a driver before he starts his actual maneuver is a big challenge.
Individual persons behave differently, have a different perception of their environment, and
this also deviates from the reality recorded in the measurement data. Besides prediction,
these edge cases of false classification are also interesting to explore. They reflect the dif-
ferences in human driving behavior and the deviation in the perception and interpretation
of the environment.
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2 Data set

In this project, we use real world traffic data collected in Germany. The first part of the
data is the signal data, and it consists of continuous time series resampled at a frequency
of 10 Hz. Its structure is described in table 1.

Feature Description Type
vel x Longitudinal velocity (km/h) Quantitative
acc x Longitudinal acceleration (m/s2) Quantitative
acc y Lateral acceleration (m/s2) Quantitative
heading Compass - direction of driving Quantitative

(0 = north, 180 = south)
dist line r Distance from outer edge of right front Quantitative

wheel to the lane boundary (cm)
dist line l Distance from outer edge of left front Quantitative

wheel to the lane boundary (cm)
road lanecount Count of the lanes Ordinal

(in same driving direction)
road angle Angle of road Quantitative
winker Winker off, left on, right on, both on Nominal
steering wheel angle Angle of steering wheel Quantitative
lane change l warning Warning whether there is an object Dichotomous

in the left blind spot or not
lane change r warning Warning whether there is an object Dichotomous

in the right blind spot or not
boundary line l Type of left boundary line of lane Nominal
boundary line r Type of right boundary line of lane Nominal

Table 1: Features in signal data

The second part of the data is object data. It is also resampled at 10 Hz. In the literature,
the vehicle for which the maneuver prediction is done is usually called Ego. At each time
stamp, there can be a variable amount of objects surrounding the Ego vehicle. The data
of these objects is obtained and classified. For example, an object can be a person, a car,
a truck or a bicycle. The features, as mentioned in table 2, are collected for each object.
Some features like the position are measured relative to the Ego vehicle.
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Feature Description Type
classificationType Indicates Type of detected object Nominal
statusMovement Indicates direction of movement relative Nominal

to Ego
drivingTubeMapping Indicates in which lane the object is Nominal

located relative to Ego
position Longitudinal distance relative to Ego (m) Quantitative
positionY Lateral distance relative to Ego (m) Quantitative
vel x Absolute longitudinal velocity (m/s) Quantitative
vel y Absolute lateral velocity (m/s) Quantitative
acc x Absolute longitudinal acceleration (m/s2) Quantitative
acc y Absolute lateral acceleration (m/s2) Quantitative
yawAngle Angle with respect to yaw axis Quantitative
yawSpeed Rate of change of yaw angle Quantitative
height Height of object (m) Quantitative
length Length of object (m) Quantitative
width Width of object (m) Quantitative

Table 2: Features in object data
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3 Preprocessing

3.1 Data acquisition

In order to predict lane change maneuvers, the data has to be annotated with labels
first. Due to the large data size, it is not possible to manually label all lane changes
by detecting them in the corresponding driving videos. Instead, we develop a rule based
algorithm which automatically finds these events in a given time series of data. The result
of this algorithm, we want to use as our ground truth to build a model which predicts
lane change maneuvers.

3.1.1 Labeling

In this project, we define a lane change event as the time between the first front wheel
crosses the line until the second front wheel crosses it.

We identify lane changes in multiple stages. Precisely, we first identify overline situations
which are all situations where one wheel crosses a line. Then, a lane change into the left
lane is a situation where first the left wheel crosses the line to the left and then (in a certain
time window) the right wheel crosses the line to the left as well. In the same manner,
we can find a lane change into the right lane. In order to find overline situations in a
given sequence of data, we use the features dist line r and dist line l. These features are
the distance from the outer edge of the front wheel to the right and left line respectively.
Each sensor has a range of 152 to −100 cm to the lane. Negative values mean that the
corresponding wheel is currently over the line. Figure 1 shows that if there is a sign
change in the distance to the line, which is not caused by a jump then we consider it to
be an overline situation. In previous work, evaluating real world traffic BMW found that
over 95% of lane changes take less than 8 seconds. Therefore, we set the maximal length
of the time window during which the second wheel should cross the line after the first
wheel crosses it to 8 seconds.

Figure 1: Lane change maneuver into left lane. First, the left wheel crosses the line.
Second, the right wheel crosses the line.

After developing the labeling algorithm based on overline situations, we test it on 6 hours
of randomly selected driving data. We compare our labels determined by the algorithm
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with videos of the corresponding drives. In this testing data, all labeled events are indeed
lane changes. Figure 2 shows an example of the result of the algorithm. As it is shown,
the algorithm is able to differentiate between left and right lane changes. Nevertheless,
it does not identify all lane changes in the data. For example, this is the case when the
lines on the streets are missing or the sensor which measures the distance to the line does
not work correctly.

Figure 2: Distances to the lines from both wheels. Upper green bars: Lane change into
left lane. Lower green bars: Lane change into right lane.

In addition, we test our algorithm allowing different lengths of time windows between
crossing the line with the first wheel until crossing the line with the second wheel. Figure
3 shows that we get indeed over 95% of the lane changes in our testing data when we
allow a maximum of 8 seconds for lane change duration.

Figure 3: Cumulative percentage of lane change duration.
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3.1.2 Prediction horizon

Our maneuver prediction method has to access whether a lane change is following in the
near future or not. The time difference between the model prediction and the actual start
of lane change event is defined as prediction horizon. As described in [8], figure 4 shows
the events which happen sequentially in a lane change situation.

Figure 4: Prediction horizon of a lane change to the left.

The points tintention until tend are defined in the following way:

• tintention: Intention/ decision of the driver to make a lane change.

• treactive: Lane change maneuver has started, vehicle is moving towards lane bound-
ary.

• tstart: Start of lane change event, first wheel crosses line.

• tend: End of lane change event, second wheel crosses line.

Clearly, the lane change has not finished at tend, but for our goal it is not necessary to
consider the time after tend. In this project, we aim to predict the intention of the driver.
Therefore, the prediction horizon is the time between tintention and tstart.

To get a reasonable value for tintention, we randomly take 500 lane change events from the
German highway data. Figure 5 shows the distribution when drivers turn on the winker
directly before a lane change. Out of the 500 situations, the winker is turned on in 73%
of the cases. Since the winker is a good point to determine when a driver decides on a
lane change, we obtain the median value of the winker start for these cases. The median
time of turning on is 1.5 seconds before tstart.
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Figure 5: Histogram - time winker is switched on directly before a lane change event
happens.

Therefore, we determine the prediction horizon as 1.5 seconds. Any model predicting the
intention of a driver should detect an upcoming maneuver (in our case a lane change)
out of the situation and the surrounding objects. Hence, our model should depend only
on features that influence a lane change maneuver and not on those that help to identify
one. As a consequence, we do not use the features winker, dist line r, dist line l, steer-
ing wheel angle and acc y for training our models.

3.1.3 Final input data

After developing the algorithm to automatically label lane changes and determining the
prediction horizon, we extract data from the BMW cluster. As an input for the models
we use small time series of data. For lane change samples these series end at tintention
(figure 4). Clearly, for non-lane change samples we use sequences where no lane change
maneuver is happening afterwards. Due to computational reasons and the amount of
data, we decide to use sequences of 5 seconds as input samples. In addition, we resample
the input sequences to a frequency of 2 Hz. Extracting data from the cluster is an iterative
process as shown in figure 6.
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Figure 6: Data processing chain.

Motivated by the size of the data, it is stored in a distributed environment (Hadoop)
and processed in a Spark framework. We work in a closed loop where we first extract a
small amount of data which we explore. In the next step, we perform feature engineering
and selection on that data. Then, we come back to the Spark framework and extract
these features on a large scale. After a few iterations we start training machine learning
models. Next, we evaluate the results and go back to the Spark framework to extract
new features if needed. At the end of these iterations, we obtain the final data set which
is described in table 3. As it is realistic to have more non lane change samples than lane
change samples, the data is unbalanced. To create a realistic test set, we take randomly
5000 samples from the training data.

Train Test
lane change samples 13416 887
non lane change samples 68393 4113

Table 3: Size of data used in this project.

To ensure that we obtain only highway data, we check extra conditions. We just use
samples where the mean velocity of Ego is higher than 60 km/h and in at least one of the
time stamps of the input sequence, there is a road lanecount value higher than or equal to
2. This means that the Ego is driving on a street where a lane change is possible. In the
next two sections, we describe how we engineer new features and further clean the data.

3.2 Feature extraction

3.2.1 Surrounding vehicles and their features

In the object data described in table 2, we have data for all objects in front of the vehicle
for each time stamp. We are interested in the objects in the direct neighborhood of the
Ego vehicle. Therefore, we consider surrounding vehicles that we call E1, E2, E3 and E4
[10] as shown in figure 7. These objects drive in the same, left or right lane compared to
Ego within the sensor range. They are the closest vehicles in front of Ego, drive in the
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same direction as Ego and have a suitable object type (e.g. cars, motorbikes, trucks). For
an example: To find E1, we obtain the closest vehicle to Ego that drives in front of it in
the same lane and in the same direction. For each of these extracted objects, we consider
the following features:

1. relative distance from Ego

2. absolute speed of the object

3. absolute acceleration of the object

Figure 7: Objects that surround Ego vehicle.

We evaluate the correctness of extracted objects and their features by comparing them to
objects in videos. That means, we take randomly some driving videos and validate that
the objects observed in the videos fit to our extracted features. As it always fits together,
we conclude that our approach for obtaining surrounding vehicles from the object data is
correct.

3.2.2 Feature engineering

Moreover, we compute new continuous and categorical features for these four vehicles
from the object data. To train a model for lane change predictions, Salvucci et al. [9]
suggest to use the following input features: inverse time to collision and time headway.
Hence, we calculate these between Ego and E1, E2, E4, as well as between E2 and E3.
For example, inverse time to collision and time headway between Ego and E1 is shown in
equation 1 and equation 2 respectively.

inv ttc Ego E1 =
speed Ego− speed E1

distance Ego E1
(1)

thw Ego E1 =
distance Ego E1

speed Ego
(2)
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Exemplary, the distribution of time headway between Ego and E1 is shown in figure 8.
Furthermore, we add two categorical features to our data set which are the total amount
of objects in the right and left lanes regarding the Ego vehicle.

Figure 8: Time headway for Ego and E1
for all data

Figure 9: Correlation matrix

We analyze correlation between features and see that the absolute speed of surrounding
vehicles is correlated with the speed of the Ego itself. Therefore, we decide not to use the
absolute speed of the objects but the relative speed to the Ego. In figure 9, one can see
that the speed difference is, in general, less correlated to the velocity of the Ego than the
absolute speed itself. The whole correlation matrix for all features can be found in figure
21 in the Appendix.

3.3 Data cleansing

In this section, we explain how we ensure that the data is clean, how we handle missing
data and what scaling methods we apply. For this data set, cleaning data particularly
means dealing with missing values and filling missed point observations with interpola-
tions. The signal data is already interpolated and cleaned such that we use it without the
application of any interpolation strategies.

3.3.1 Handling missing objects

The necessary objects as described above are missing for particular time stamps in some
cases. The key reasons for this is either there was no vehicle for that particular position
present in the vicinity of the Ego vehicle in that time stamp. Or, for technical reasons,
there is no information about certain situations. We drop input sequences where more
than 50% of the information is missing.

The initial data is recorded at 10 Hz frequency. Since it is reasonable to assume that the
raw values do not change much in successive entries (with a difference of 0.1s), we fill the
missing entries with the values from the previous time stamp in the same input sequence.
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A limit of 3 (0.3 s) was applied on the forward fill. The other values in the sequence
that are still missing, are filled later with the mean of that particular feature. In order to
differentiate these values from the actual values, we create new binary features for each of
the surrounding objects. These binary features have a value of one if an object is found
and zero if no object is found for that particular time stamp.

3.3.2 Scaling methods

We scale the features to make the model perform better and learn the relations in the
data quicker. The values needed to scale the data are calculated on the train set and
then both, train and test set are scaled accordingly. For continuous features, we use the
following two approaches to test which one performs better for our input data.

• Standard Scaling

xnew = (x− µ)/σ

where µ is the mean across that feature and σ is the standard deviation.

• Min-max scaling

xnew = (x− xmin)/(xmax − xmin)

where xmax and xmin are the minimum and maximum values for that particular
feature.

The nominal features with more than two possible categories are one-hot-encoded. That
means that we create a new binary feature for each category. The number of new fea-
tures equal the number of unique categories in the initial feature. Some of the features
that are one-hot encoded are lane change l warning and boundary line r. We do not one-
hot-encode nominal features like number of vehicles in a lane as the value has physical
significance. These are scaled using the above mentioned techniques.

The final set of features is shown in table 8 in the Appendix.
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4 Statistical data exploration

We statistically explore the input data for our models. Therefore, we create data explo-
ration plots to observe general patterns and the effect of features on the possibility of a
lane change. Precisely, we compare the 5 second input sequences labeled as lane change
with sequences not labeled as lane change. Our aim is only to predict if a lane change
is upcoming or not. Nevertheless, it makes sense to explore the data by distinguishing
between lane changes to the left and lane changes to the right. In the following, we show
examples of the most interesting features. The rest can be found in figures 22 and 23 in
the Appendix.

4.1 Continuous features

We see that lane changes to the left have an increasing average acceleration by the Ego
vehicle. This is shown in figure 10. It complies with the fact that drivers often change to
the left lane to either overtake or to increase their speed. In comparison, when the vehicle
changes to the right or stays in the lane, the acceleration does not increase.
Figure 11 shows the mean headway time between Ego and E1. On average, we see a
decrease in the time headway for left lane changes. Since changes to left are often because
Ego is faster and needs to overtake E1, this observation is expected. On the other hand,
if the Ego vehicle does a lane change to the right, on average we see an increase in the
time headway. This behaviour we expect as well, since in this case E1 is faster than the
Ego vehicle itself. That is why Ego changes from the left into the right, a slower lane.
Lastly, the time headway on average stays constant if the sequence is labeled as no lane
change.

Figure 10: Mean acceleration of Ego vehi-
cle.

Figure 11: Mean time headway between
Ego and E1.

Figure 12 shows the inverse time to collision between Ego and E2. For lane changes
to the right, we see on average a significant decrease at the end of the input sequence.
This means the time to collision values are increasing. A potential explanation for this
behaviour is more difficult. It could be that the Ego gets slower and therefore turns to
the next lane right. On the other hand, we analyze that for lane changes to the left and
no lane changes the time to collision between the Ego vehicle and E2 is on average very
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similar. We conclude that a lane change to the left does not depend that much on E2.
The mean values of a feature over the different labels give the sense that the data is highly
separable. Figure 13 also shows the standard deviation of each of these average values in
the case for the inverse time to collision between Ego and E2. From that we see that the
values highly overlap. This trend was observed for most of the features.

Figure 12: Mean inverse time to collision
between Ego and E2.

Figure 13: Mean inverse time to collision
between Ego and E2 with std. deviations.

4.2 Categorical features

Next, we explore the categorical features. Here, only the last time stamp (time corre-
sponding to tintention, see figure 4) in each input sequence for certain categorical features
is taken into consideration. We evaluate the effect on the probability of a lane change
dependent on different categories.

Figure 14 shows the empirical probability of a lane change conditioned on the existence
of the surrounding vehicles E2, E3 and E4. We see that the empirical probability of
a lane change is reduced by the existence of E2 and E3. We expected this, since Ego
would have less scope to change its lane if there is more surrounding traffic. In the case
of E4, we see that the empirical probability of a lane is increased by its existence. This
seemingly anomalous behaviour of E4 is probably because of another reason. The signal
data consists of the number of lanes on the road but does not have information about
which lane is the Ego vehicle currently driving in. The existence of E4 leverages the
probability that a left lane exists to which the Ego vehicle can go.
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Figure 14: Probability of lane change conditioned on the existence of different vehicles.

We use the same method as described above to inspect other categorical variables. In
figure 15, the first plot shows the effect of the type of boundary line on the empirical
probability of lane changes. Category 2 leads to a very high probability of a lane change
but occurs rarely. Other than that category 3 leads to a higher probability of lane change
and occurs often. In the second plot, we see that probability of lane changes reduces if
we have the lane change warning for the right activated (category 1), i.e there is some
object in the right blind spot area of the Ego. The probability is not zero because you
can still change your lane in the other direction and these values are collected 1.5 seconds
before the start of lane changes. The object may have moved out of the blind spot region
by that time. Category 2 we observe very rarely again. The last plot shows that the
lane change probability decreases as number of vehicles around the Ego increase (here
the count of vehicles in right lane is shown). This is also expected, because more traffic
makes it difficult for the driver to change lanes.

Figure 15: Probability of lane change conditioned on different categories. Numbers are
counts on how often the category occurs.
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5 Algorithms

In this section, we explain the performance metrics that we choose and the key reasons
behind that. We describe the different machine learning techniques that are used for cre-
ating our maneuver predicting method. Random Forests and Support Vector Machines
(SVMs) are frequently used methods for classification tasks. Our intention is to get a
relatively simple baseline model using a Random Forest. Then, we use SVM where we
apply feature selection methods in order to find out which features are most important
for predicting lane changes. We improve the results by using Recurrent Neural Networks.
Such networks are designed to handle time series input data. For fundamental knowledge
of these models, we refer to [5], [1] and [6].

5.1 Metrics used to compare algorithms

The prediction of a model can be True Positive (TP), False Positive (FP), False Negative
(FN) or True Negative (TP). TP represents the instances, where lane changes are correctly
classified. FP describes the events that are wrongly classified as lane changes. Similarly,
FN refers to lane changes that are wrongly classified as non lane changes. In the following
equations, we define the performance measures that are used later for our comparisons [3].

precision =
TP count

TP count+ FP count
(3)

recall =
TP count

TP count+ FN count
(4)

F1 =
2 ∗ precision ∗ recall
precision+ recall

=
TP count

TP count+ FN count+FP count
2

(5)

Precision is the fraction of relevant instances over all retrieved instances as shown in equa-
tion 3. Recall is the fraction of retrieved relevant instances over all relevant instances and
is defined in equation 4. In our case, a perfect precision score of 1.0 means that every
obtained lane change is indeed a lane change, however, it does not necessarily mean that
all lane changes are found. The highest recall score of 1.0 proposes that all lane changes
are obtained, but does not say anything about how many sequences are incorrectly labeled
as a lane change.

The combination of these two metrics is called F1 score, which is the harmonic mean of
precision and recall as given in equation 5. This is a weighted mean where low value
weights are increased. Hence, F1 gives equal weights to both precision and recall. There-
fore, to achieve a decent F1 score, both precision and recall should be high [3]. We use
F1 score to compare our models since classes in our data set are imbalanced. We also
consider the accuracy score as an additional information.
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5.2 Random Forest

A Random Forest is an ensemble of decision trees [3]. The advantage of tree based
models is that there is no need to scale the quantitative features nor to one-hot encode
the categorical features. In addition, these models are not sensitive to correlated features
as explained in [6]. Therefore, we can just use all features. Random forests introduce
additional randomness to avoid overfitting by searching not for the best feature when
splitting a node, but searching for the best feature from random subset of features. Since
our input samples are sequences, we process them before feeding to a Random Forest.
For each input sequence, we extract the following features:

• all features corresponding to last time stamp of sequence

• all features corresponding to first time stamp of sequence

• the difference between the first and the last time stamp (again for all features)

We do not perform a systematic hyper parameter search since we only want to get a
benchmark model. Instead, we manually test some combinations of parameters until we
have a reasonable benchmark.

5.3 Support Vector Machine

An SVM is a powerful and versatile machine learning model, especially used to classify
complex, but not large, datasets [3]. A Linear SVM classifier separates data into two data
classes linearly. The separation line should not come close to the instances, but stay as
far away as possible.

Usually a linear SVM perfoms well in classification tasks and linear kernel is a default
one [7]. In our case, the two classes are not linearly separable, hence, we apply the kernel
trick to the data. We observe that, a commonly used for SVM [3], Radial Basis Function
(RBF) kernel performs better on our data set than a linear kernel. We transform the
input sequences in the same way as we did it for Random Forests. Additionally computed
feature differences are scaled in the same way as the original features, and our final data set
consists of 90 features. We also use balanced class weights to make the weights inversely
proportional to class frequencies. Next, we do a grid search with 10-fold cross validation
with all the features to find the best hyper parameters. We obtain the best results for
gamma of 0.01 and penalty parameter for the error of 10.

• Gamma - This regularization parameter defines the influence of each training sam-
ple that is selected as a support vector. Increasing gamma results in more irregular
decision boundary that wiggles around individual instances. Hence, the model fits
better the training samples. With smaller values of gamma, decision boundary
becomes smoother.

• Penalty parameter - This parameter represents a trade off between correct classi-
fication of training samples and maximization of the margin of the decision function.
Smaller penalty parameter leads to a larger margin. Hence, the decision function
will be simpler at the cost of lower accuracy.
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The number of features is very large, so we use two feature selection methods to find the
most relevant features using the best hyper parameters from above. We cannot do a grid
search for hyper parameters for every feature combination because it is computationally
very expensive.

5.3.1 Forward feature selection

In [4], Guyon et al. suggest to use forward feature selection method to find features
that perform best. The idea of this method is to train different models with every single
feature and iteratively continue with the best feature from the last round. The procedure
continues until all features are ranked or the model’s performance stops increasing. The
best features are shown in table 4. Prefix diff represents the difference between first and
last time stamps. Suffix start in some feature names refers to a feature corresponding to
the first time stamp.

Features F1 score
vehicles right count 0.3659
all above & boundary line l 3 0.3823
all above & vel x 0.4018
all above & acc x 0.4406
all above & diff vel Ego E2 0.4863
all above & boundary line l 3 start 0.4977
all above & inv ttc Ego E1 0.5107
all above & diff vel Ego E2 start 0.5239
all above & thw Ego E1 0.5289
all above & acc x E1 0.5385
all above & distance E1 start 0.5388
all above & diff inv ttc Ego E4 0.5456
all above & inv ttc Ego E2 0.5474
all above & E3 exists 0.5533
all above & diff thw E2 E3 0.5571

Table 4: Best features obtained from forward feature selection method. Each next itera-
tion includes the features from above and a new feature.

Number of vehicles in the right lane is the best feature, and its impact to a lane change
we already saw in the data exploration, shown in figure 15. Adding boundary line type
further increases the performance, which indicates if a lane change is possible at all. The
next best features are the velocity and acceleration of the Ego vehicle. If one trains an
SVM model with 15 features from table 4, then the F1 score of slightly more than 55%
can be achieved.

5.3.2 Backward feature elimination

In backward feature elimination, one trains a model with all the features and then keeps
removing the least promising one until the performance stops increasing [4]. First, several
features representing boundary type are eliminated. These features can be redundant
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since we observe that feature boundary type left and right usually have the same values.
Next, road angle and boolean variable if E3 exists are removed. Further feature reduction
results in slight performance drop, hence, the algorithm terminates. We conclude that
the dropped features are not necessary to predict lane changes, and we achieve a similar
F1 score of 56% as in the forward feature selection method.

Both feature selection algorithms improve kernel SVM performance by almost similar
amounts. To train the best SVM model, we use the features remaining after the backward
elimination process.

5.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a class of artificial neural networks where con-
nections between nodes form a directed graph along a temporal sequence. Such models
have an internal state (memory) which allows them to process a series of inputs where
the output of one sample is influenced by the previous sample [1].

For our project, RNNs are selected as the input is a time sequential representation of the
kinematics and surrounding of the Ego vehicle. The input is reshaped such that each value
consists of a 2-dimensional matrix with the features as columns and each row representing
a particular timestamp. Thus, each final input sample has the following shape:

(number of timestamps ∗ features)

We use Long Short Term Memory (LSTM) based RNNs for this purpose. A LSTM unit
consists of an input gate, output gate and a forget gate. The key reason for using such a
model is that they prevent the problem of vanishing and exploding gradient. In addition,
we use Gated Recurrent Units (GRU) as they are computationally less extensive and
perform very well on smaller time series [11]. The networks are implemented using the
deep learning library Keras [2].

5.4.1 Model characteristics and hyperparameter tuning

We create a model with 4 layers: the first two are recurrent layers. This is followed by
two dense layers with the latter one having size equal to the number of outputs. Some of
the other features used in the network include:

• Input Weight Sampling - Since our dataset is highly skewed (almost 83% of the
samples are non lane changes) to represent a real world scenario, we try weight
sampling the inputs to give more importance to the lane change samples.

• Dropout - Dropout involves random switching off certain neurons in a particular
layer during training. This prevents the model from overfitting on the training
dataset. We use both normal and recurrent dropout for our model.

• Weight regularization - L2 regularization limits the absolute values of the weights.
This technique also prevents overfitting, and we use it since our training and vali-
dation accuracy initially had a huge margin.
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• Reduce learning rate - We use Keras callback ReduceLROnPlateau to reduce
the learning rate whenever the validation loss stopps decreasing for a given number
of epochs. Reduction in learning rate helps to fine tune the model when it starts
to fluctuate between two sub-optimal values. We implement ReduceLROnPlateau
instead of weight decay as it depends on feedback from the network instead of a
fixed rule.

Finally, we train two RNNs, one with LSTM and the other with GRU as the recurrent
layers. The final structure of the models is shown below:

Model Recurrent 1 Recurrent 2 Dense 1 Dense 2 Learning rate
GRU 128 64 32 1 0.003
LSTM 128 128 32 1 0.005

Table 5: Structures of the best model after hyperparameter tuning.

For these models, we tune the hyperparameters sequentially as a grid search over all the
hyperparameters is not possible due to computational limitations. First, a grid search
over learning rate and number of neurons in the recurrent layers is done. Using the best
values obtained from this, we try different batch sizes to further improve accuracy. Then,
we see individually the effect of adding weight sampling and L2 weight regularization on
our model. We also test the change in accuracy by removing dropout and learning rate
adaptation.

Figure 16: F1 score variance with number
of neurons in recurrent layers.

Figure 17: F1 score variance with learning
rate.

Figure 16 shows the variation of the F1 score with the number of neurons for the best
learning rate for both the GRU and LSTM models. Similarly, figure 17 shows the effect
of different learning rates when we fix the best neural structure for the model.
Evaluating the effect of above-mentioned techniques, our final model is with GRU layers
containing dropout, adaptive learning rate and L2 weight regularization.
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6 Results

We present the performance of the different algorithms described in the previous section.
In addition, we look at edge cases to better understand the limitations of the model and
do some case studies.

6.1 Final results on different algorithms

Table 6 compares the final results on the test data for our different models.

Model F1 Accuracy
Random Forest 0.6864 0.7946
SVM 0.5642 0.8273
RNN 0.7714 0.9264

Table 6: Final results (F1 and accuracy-scores).

For our data set, standard scaling of the continuous features results in better F1 scores than
min-max scaling. We obtain best results using a RNN and see that SVMs and Random
Forests are not well suited for our data set. Figure 18 shows the confusion matrix on the
test data for the final result with the best model obtained by the RNN. Here, lc denotes
lane change sequences and no lc are the non lane change sequences. As described in 3.1.3
the test data contains 5000 samples where approximately 17% are labeled as lane change.
The precision-score is over 90%. That means lane changes predicted by the model have
a very high likelihood to be indeed a lane change. Recall-score is at 62.6%. A reason for
that could be the high variance in the features we saw in the statistical data exploration.

Figure 18: Confusion matrix for the best trained model.

We also fit a RNN by just using the best features obtained from the SVM feature selec-
tion. Such a model achieves an F1 score of 0.7347 with an accuracy of 0.9194. Thus, it
works slightly worse than our best model but is a viable option if computational power
or memory is restricted.
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Additionally, we use the same architecture and hyperparameters of the best RNN to build
a new model which also predicts the direction of a lane change. This model has three
possible outputs - lane change to right, lane change to left and no lane change. The
observed F1 score is 0.7470 with an accuracy of 0.9014 and the confusion matrix for this
is shown in figure 19. We conclude that we obtain better results in predicting just the
intention of a lane change neglecting the direction.

Figure 19: Confusion matrix for the model predicting direction of lane change.

6.2 Edge case exploration

In order to understand the limitations of our model, we consider the edges of the confu-
sion matrix in figure 18. Therefore, we group the test set by the edges and compute the
mean of each feature over the 5 second sequences. Then, we compute correlation factors
between these mean values.

As an example, figure 20 shows the acceleration of the Ego vehicle where each line repre-
sents the mean values of one edge. The mean acceleration increases for the true positives
and false positives. The correlation between the mean of these two is 0.74. Therefore,
we conclude that for sequences where the acceleration increases the likelihood that the
model classifies it as a lane change is higher. That can lead to misclassifications of some
non-lane change sequences.

Figure 20: Mean acceleration for all time stamps.
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In a similar manner, we study the possible effect on misclassifications for other features. In
addition, we take a few edge cases and study the driving videos. We obtain the following
observations:

• Driver overtakes but does not go to a free right lane afterwards (false positive).

• Driver changes the lane with no objects around (false negative).

• In construction area, the feature boundary line type is not correctly recorded. Driver
cannot go right because the line is solid (false positive).

The list above is clearly not complete as we just look at some samples. Still it can give
an idea on the limitations of the model.

6.3 Case studies

In this section, we perform two experiments. First, we apply our best model obtained in
section 5.4 directly to a geographically different market and check its transfer ability. We
use exactly the same model and features as before, trained only on German highway data.
But now the test set consists of Chinese highway data. The fraction of lane changes vs.
non lane changes is identical as in the original test set. We observe that the efficiency on
the Chinese data decreases significantly. Therefore, we recommend that a simple transfer
of trained models is not practicable. Other than that, the overall method we approach to
train the German-data model is transferable.

As a second experiment, we train a model using all the features that we have dropped
before including winker, dist line r, dist line l, steering wheel angle and acc y. Such a
model performs better since these features are highly related to the occurrence of lane
changes. But as mentioned earlier, this model no longer predicts the intention of the
driver. The results of both experiments are shown in table 7.

Experiment F1 score Acc. TP TN FP FN Test samples
Direct transf. China 0.2664 0.6276 169 1400 700 231 2500
Using all features 0.8828 0.9366 648 4035 78 239 5000

Table 7: Results of experiments.
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7 Conclusions and future work

In this project, we developed a data-driven maneuver prediction method for large scaled,
real-world traffic data. With the example of lane changes, we invented an algorithm for
rule-based detection of these events. Using this algorithm, we automatically generated
a ground truth for further implementation steps. Then, we developed a method to ex-
tract features from a distributed framework. These features describe the environment and
kinematics of the test vehicle (Ego) as well as the objects in the surrounding of the Ego.
Next, we implemented three different machine learning approaches using these features
and compared their performance. With Recurrent Neural Networks, we obtain an F1

score of 77.1 % and an accuracy of 92.6 %. We are able to predict lane changes with a
high precision. Thus, the algorithm particularly has a very low false positive rate, which
means that almost each recognized lane change indeed is a lane change.

One limitation in our data set is the absence of self-representation of the test vehicle, i.e
there is no feature which states in which lane the test vehicle is currently driving. So we
cannot conclude precisely if there is a free lane in the left or right. Another limitation
is that we just have surrounding objects in front of the vehicle, so we do not know the
influence of upcoming vehicles from the back. The availability of these attributes should
lead to an even higher efficiency of the model.

The final model was trained on German highway data and then directly applied to data
from a geographically different area. As we observed a significant decrease of efficiency,
we conclude that our model cannot be transferred directly. Instead, we recommend to use
transfer learning methods to fine tune our model. Other than that, the overall method
we developed is directly applicable to a different market.

In future work, we suggest to include a clustering of the drivers based on similar driv-
ing behaviour. This allows developing different models for people with distinct driving
patterns. Secondly, using GPS data and navigation systems to better understand the
intention behind driving maneuvers should improve the algorithm.
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Appendix

Figure 21: Correlation matrix among all the features.
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Feature Description
vel x Longitudinal velocity
acc x Longitudinal acceleration
road lanecount Count of the lanes

(in same driving direction)
road angle Angle of road
heading Direction of driving
distance E1, distance E2, Distance of different vehicles from the
distance E3, distance E4 Ego
acc x E1, acc x E2, Absolute Longitudinal acceleration of
acc x E3, acc x E4 the different object vehicles
vehicles left count, Number of vehicles in the left and
vehicles right count right lanes
thw Ego E1, thw Ego E2, Time headway between two
thw Ego E4, thw E2 E3 vehicles
inv ttc Ego E1, inv ttc Ego E2, Inverse time to collision between two
inv ttc Ego E4, inv ttc E2 E3 vehicles
diff Ego E1, diff Ego E2, Difference of the speed between two
diff Ego E4, diff E2 E3 vehicles
E1 exists, E2 exists, Binary feature to show whether
E3 exists, E4 exists a vehicle exists or not
lane change r warning 0, One-hot encoding of the value of the
lane change r warning 1, lane change warning feature for
lane change r warning 2, left and right side of the Ego
lane change l warning 0,
lane change l warning 1
lane change l warning 2
boundary line l 0, boundary line l 1, One-hot encoding of the value of the
boundary line l 2, boundary line l 3, boundary line feature for
boundary line r 0, boundary line r 1, left and right lane
boundary line r 2, boundary line r 3

Table 8: Final set of features.
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(a) Mean velocity of the Ego vehicle.

(b) Mean inverse time to collision for Ego and E1.

(c) Mean speed difference between Ego and E4.

Figure 22: Data exploration plots for some continuous features.
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Figure 23: Data exploration plots for some categorical features.
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