
TECHNICAL UNIVERSITY OF MUNICH

TUM Data Innovation Lab

Deep Learning in CFD @BMW

Authors Felix Asanger, Meng Liu, Thana Guetet
Mentor(s) M.Sc Laure Vuaille
Co-Mentor M.Sc Marija Tepegjozova
Project Lead Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier (Department of Mathematics)

Jul 2020

1

Abstract

An important part in the development of a car is the optimization of the car design with
respect to its aerodynamic properties. This optimization is an iterative process which
consists of the car design refinement step and a subsequent aerodynamic validation of the
changes in the design. The validation step is usually performed by a Computational Fluid
Dynamics (CFD) simulation, which computes the velocity and pressure fields induced un-
der certain conditions involving fluid flow velocity.

Computational Fluid Dynamics (CFD) simulations achieve high numerical accuracy, but
the computational and time costs of CFD simulations are high as well. Therefore, it
is desired to have an approach which approximates the results of these simulations well
enough while being less time consuming.

Deep neural networks have gained momentum recently and its applications now cover
a wide range of domains including physical simulations. Given the adequate data, neural
networks can learn complex structures and transfer their knowledge to new unseen cases.
The goal of this project is to investigate the performance and possible application of Deep
Learning for predicting the results of CFD simulations. Some examples have been already
introduced in the literature in [9], [3], [2], and [14]. We will review these applications in
our work in later sections.

In this work, we first introduce the ways to pre-process the raw data and their influ-
ences. PointNet++ [7], an architecture to learn hierarchical features on point clouds, is
modified to adapt to our problem settings. Furthermore, we study the application of Hid-
den Fluid Mechanics [8], an adaptation for neural network to ensure that physical laws are
not violated in the predictions of the model, and modified in a way to load pre-processed,
time-averaged samples.
Due to the high complexity of the problem, the results of all investigated approaches
do not meet the desired outcome of approximating the solutions of CFD simulations.
We therefore explore the reasons why our chosen approach is currently not working and
suggest possible approaches to improve the performance.

CONTENTS 2

Contents

Abstract 1

1 Introduction 4
1.1 Problem definition . 4

1.1.1 Computational fluid dynamics (CFD) 4
1.1.2 Why consider alternatives to CFD simulations? 5

1.2 Project Goal . 5

2 Related Work 5
2.1 Encoder-Decoder CNN . 5
2.2 U-Net . 7
2.3 Hidden Fluid Mechanics . 8
2.4 Vector Field Based Neural Networks . 9
2.5 PointNet++ . 9

3 Statistical Data Exploration 10
3.1 Data Acquisition . 10
3.2 Data Cleansing . 11

3.2.1 Outlier Detection . 11
3.2.2 Region Cropping . 13
3.2.3 Points Down-Sampling . 13
3.2.4 Physics-related Pre-Processing . 15
3.2.5 Machine Learning Pre-Processing 16

4 Improvements of the Model and Implementations within this Project 16
4.1 Fluid Mechanics Induced Loss . 16
4.2 Mask on the Loss . 18
4.3 Sampling methods - SDF based, random, farthest 19
4.4 From classification/segmentation to regression 19

5 Results 19
5.1 Overfitting . 19
5.2 Training . 20
5.3 Factors Influencing the Model’s Performance 21

5.3.1 Data . 21
5.3.2 Problem complexity . 22
5.3.3 Model . 23
5.3.4 Downsampling method . 24
5.3.5 Hyperparameter tuning . 24

6 Conclusion and Outlook 24

Bibliography 26

CONTENTS 3

Acronyms and Abbreviations

CFD Computational Fluid Dynamics

MSE Mean Squared Error

NS Navier-Stokes Equations

NSE Navier-Stokes Equations

RANS Reynolds-averaged Navier-Stokes Equations

SDF Signed Distance Function

SSE Sum Squared Error

u inlet velocity at the inlet of the control volume

Ux velocity in x-direction of every point in the control volume

Uy velocity in y-direction of every point in the control volume

p pressure of every point in the control volume

1 INTRODUCTION 4

1 Introduction

Optimizing a car design is an iterative process which consists of two main steps. Firstly,
the initial car design is slightly modified ideally to achieve some predefined target criteria.
As a second step, the modifications’ impact on the aerodynamics of the car is verified by
performing a Computational Fluid Dynamics (CFD) simulation.
These two steps are repeated until the predefined target criteria are met.

1.1 Problem definition

The process of evaluating the effect of car design changes on its performance is evaluated
by CFD simulations. The iterative process can be summarized in the following figure 1:
1

Figure 1: The iterative car design process

1.1.1 Computational fluid dynamics (CFD)

CFD is a branch of fluid dynamics that uses numerical simulations to analyze, calculate
and solve the Navier-Stokes equations that describe the flow fields [12].

The Navier-Stokes equations are a set of differential equations that describe how the
velocity, pressure and density of a moving fluid are related [1]. Due to the complex-
ity to solve these equations, using time-averaged Navier-Stokes Equations (NSE) called
Reynolds-averaged Navier-Stokes Equations (RANS) can accelerate and simplify the pro-
cess of solving the CFD equations.

1https://www.bmw.ly/content/dam/bmw/marketB4R1/bmw_ly/technicaldata/BMW_8_Series_

G15/images/bmw_m850i_xdrive/bmw-8series-coupe-technicaldata.jpg

https://www.bmw.ly/content/dam/bmw/marketB4R1/bmw_ly/technicaldata/BMW_8_Series_G15/images/bmw_m850i_xdrive/bmw-8series-coupe-technicaldata.jpg
https://www.bmw.ly/content/dam/bmw/marketB4R1/bmw_ly/technicaldata/BMW_8_Series_G15/images/bmw_m850i_xdrive/bmw-8series-coupe-technicaldata.jpg

2 RELATED WORK 5

1.1.2 Why consider alternatives to CFD simulations?

Despite CFD simulations computing accurate flow fields the main disadvantage of these
simulations is that they are computationally costly. Not only in a sense that computing
the solutions of differential equations numerically itself is computationally costly but also
generating the meshes for the CFD simulation is very time consuming but also crucial
for getting good simulation results. Besides, as mentioned before the car design and
evaluation process is iterative. This means that having a fast approach to approximate
the results of CFD simulations could speed up the development process of a car a lot
which results in lower development costs for car manufacturers.
Taking into consideration that CFD simulations are used as an evaluation method in the
design process of a car, the idea of this project is to investigate the usage of deep learning
to produce the results of the CFD simulations.The growing application of machine learning
in the engineering and physics domain motivated the idea of studying the performance of
deep learning methods in the domain of predicting fluid dynamics.

1.2 Project Goal

The goal of this project is to introduce and evaluate a deep learning architecture that is
able to generate the 2D airflow characteristics (velocity in x and y directions and pressure)
given varying boundary conditions, namely different free-stream velocities and car shapes.
This approach should help reducing the time being spent on verifying the relevance of the
changes made in car design refinement steps.

2 Related Work

Evaluating the accuracy of deep learning methods in predicting the airflow is motivated
by the use of machine learning techniques to understand physical phenomena. In this
section we highlight some of the models that were used to predict flow fields, we will then
present the work on Hidden Fluid Mechanics and an interesting approach of vector field
network. Finally, we will present PointNet++, a model that showed promising results in
classification and segmentation problems of large unstructured point clouds.

2.1 Encoder-Decoder CNN

CNNs, thanks to their capability of deriving high-level features from data with strong
spatial and temporal correlations[9], presented a potential method for learning the flow
field representation from given CFD simulations.
In 2016, Guo et al.[14] used a CNN architecture to predict real-time non-uniform steady
laminar flow (velocity in x and y direction). In this work, the authors also presented
a method for representing the geometry of the studied shapes (airfoils and primitive
shapes) called the Signed Distance Function (SDF). The SDF provides a general metric
to represent different geometry shapes and can be applied in other types of neural neworks
as well. It computes the minimum euclidean distance of each point to the geometry

2 RELATED WORK 6

boundary. Points on the geometry boundary have a SDF of value zero.

SDF (x) =

d(x, δΩ) x /∈ Ω

0 x ∈ δΩ
−d(x, δΩ) x ∈ Ω,

(1)

where d(x, δΩ) is the minimum distance to the geometry boundary δΩ.
For minimizing the error function, the authors used a slightly modified mean squared
error [9]:

L(θ) = 1/N
N∑

n=1

∣∣t̂x(sn)⊗ 1[sn > 0]− tx(sn)
∣∣2

where t̂x(sn) is the prediction of the model for each point , tx(sn) is the ground truth and
1[sn > 0] is a mask of values being either zero or one depending on the sign of the SDF.
Introducing this mask would introduce some physical definitions such that the velocity
inside and on the boundary of the geometry shapes is zero [14]. This way one can condi-
tion the predictions of the network.
This work also showed that CNNs are able of predicting the velocity flow field two orders
of magnitude faster than a GPU-based CFD solver or four orders of magnitude faster
than a CPU-based CFD solver.[14]
In a later work Bhatnager. et al. [9] also developed a shared Encoder-Decoder CNN to
predict the velocity and pressure field of a non-uniform steady RANS flow. The used
architecture can be seen in the figure below 2.

Figure 2: Shared Encoder-Decoder CNN architecture from [9]

The limitation of using the previously mentioned architectures as a baseline for our ap-
proach is that the experiment setup is considering the same input flow stream (u inlet)
in all simulations and for all samples. This does not correspond with our setup which has
a different input flow stream for each sample. Also, the evaluated flow is laminar, where
the fluid particles move in a smooth, orderly manner following a straight line parallel
to the surface of solid objects when passing by them[14]. However, in our case, many
simulations involve turbulent flows, which indicate the presence of vortices in the flow.
The flow streamlines are not all straight or parallel to the objects present in the control
volume [13]. This point can affect the ability of the models to generalize to our more
complex setup.

2 RELATED WORK 7

Due to the high depth of the neural network, some characteristics of the object shape,
for example, can be lost in the process of convolution. To ensure that important features
are not overlooked, we consider in the coming section an architecture that supports skip
connection via concatenating previous features also know as U-Net.

2.2 U-Net

In their work, Chen. et al. [2] accessed the performance of different variations of the
U-Net architecture in predicting the laminar flow around arbitrary 2D shapes. The U-
Net variations are stacked U-Nets, where the output of one U-Net is passed to the next
stacked Network as input until the last stacked U-Net.
Parallel U-Net consists of passing the same dataset or a noise version of it to two U-Nets
that compute an output each. Finally, the parallel U-Net’s output is the average of the
outputs previously computed. The authors reported a slight improvement in the velocity
predictions by the more complex architectures but hinted to the drawback of a double
size of parameter and consequently double training times. The standard U-Net achieves
in this case a better performance overall considering all experimental conditions.
In 2019, Thuerey et al. [3] developed a 14-layer standard U-Net to calculate the high-
dimensional velocity and pressure fields. The architecture can be seen in the figure below 3.
In this work, there was also the introduction of physics-inspired pre-processing techniques

Figure 3: The U-Net architecture from [3]

which we will study further and apply to our data in section 3.2.4. The out of the box
implementation [4] has been briefly tested on our data to overfit on one sample trained for
250 epochs. To transform the irregular grid to a regular grid interpolation of the sample
to a 128x128 image was done and the results for the velocity in the x-direction can be
seen in the figure 4

(a) The predicted Ux flow for case 0. (b) The groundtruth Ux for case 0.

Figure 4: The predicted Ux flow vs the true Flow (dark blue areas indicate low velocity
values whereas green and yellow value indicate gradually higher values).

Due to the additional processing that has to be done to transform the data to structured

2 RELATED WORK 8

grids (interpolation plus removing the flow inside the car which wasn’t considered in 4)
and the uncertainty of the resolution that should be used to capture the details especially
on the surface of the car, besides the longer training time (overfitting on one sample
takes 30 mins. The same experiment takes 20 mins using the PointNet++ on similar
computation capacity) led us to consider one of the other alternatives presented later in
section 2.5.

2.3 Hidden Fluid Mechanics

Raissi et al. [8] present a physics informed deep learning framework which is capable of
leveraging the conservation laws for mass, momentum and energy from the Navier-Stokes
equations to infer hidden quantities [8].

In their problem setting they were only given the spatio-temporal concentration of a
passive scalar, which is for example dye or smoke. From these values they are inferring
velocity and pressure fields which they refer to as hidden quantities, since they do not
have labels for those. The following figure 5 gives an intuition about the Navier-Stokes
informed neural network developed by Raissi et al.[8].

Figure 5: Navier-Stokes informed neural network by Raissi et al.[8]

The main concept behind this approach is to not only use a supervised quantity in the
loss, which is in this setting the spatio-temporal concentration of a passive scalar, but to
also take the unsupervised quantities into account.

This is done by adding the terms e1 through e6 from figure 5 to the loss function of
the neural network. These six equations correspond to the already mentioned Navier-
Stokes equations. The derivatives occurring in the differential equations are computed
using automatic differentiation by computing the derivatives of the predicted outputs of
the neuronal network with respect to the inputs.

If the differential equations are fulfilled their value approaches zero and only a very small
loss is added to the overall loss. In contrast to this, if the differential equations are not
nearly fulfilled, and therefore the physical laws of fluid dynamics are violated, a big term
is added to the overall loss.

2 RELATED WORK 9

This forces the neural network to predict values for the pressure and velocity fields which
follow physical laws.

2.4 Vector Field Based Neural Networks

In section 1.1.1 and section 2.3 we introduced the physics behind the project, and in this
section, we will look at this problem from a slightly different angle. As mentioned before,
beyond simply letting the neural network to learn the data, we can impose constraints to
enforce that the learning model follows fluid mechanics laws. One interpretation is that
given a closed area, the amount of inlet flow is equal to the outlet flow, and inherently the
field is smooth everywhere which means that there are no sudden jumps or gaps in the
area. All those aspects can be represented by a vector field without sink or source. Follow-
ing this thought, a paper by Vieira et al.[11] published in 2018 is found as a starting point.

The core idea of this method is to first construct an initial vector field with a set of
Gaussian kernels. Then uses the forward Euler’s method to approximate the gradient
and find the velocities of particles (coordinates on the vector field), which will result in
a final configuration of the vector field. The goal of this paper is to demonstrate its
capabilities by tackling a simple classification problem. The trained vector field will move
the tangled points to come to linear separable states (shown in figure 6).

Figure 6: Input data, learnt vector fields, and transformed data as output [11]

There are some downsides of this method. Firstly, it is still at a concept level and the
scalability is unknown, especially when inputs are in a high-resolution field. Secondly, it
directly modifies the coordinate while in our setting the car shape and boundaries should
stay solid. Moreover, Euler’s method for approximation is rather rough compared to the
requirement of CFD. Nevertheless, this interesting method deserves further investigation
when possible.

2.5 PointNet++

As previously mentioned, the goal of this project is to propose a deep learning method
to predict the results of a CFD simulation. In this regards we want to introduce the
PointNet++[7] architecture. PointNet++ [7] was proposed in 2017. It is the successor of
PointNet [6]. PointNet was the first neural network architecture that directly works with
point clouds as an input. With the development of PointNet++, Qi et al. [7] extended
PointNet to be able to learn hierarchical features. The core architecture of PointNet++
is shown in the middle box of figure 7. It basically consists of two parts.

3 STATISTICAL DATA EXPLORATION 10

Figure 7: The architecture of PointNet++[7] after modification to adapt to our goal,
which is learning and predicting velocities and pressure given car shapes and inlet data.

Set abstraction layer Firstly, the set abstraction layer which again is divided into
two layers, which are the sampling layer and the grouping layer. The sampling layer
downsamples the number of points from its input to a lower number of points. Those are
called centroids. The grouping layer then aggregates information around those centroids
by taking all points from the input of the current layer into account which are located
within a certain radius around the centroid. This is done by computing a local region
feature vector, which has a fixed length [7]. These two layers are followed by a unit
PointNet [6] which computes a larger set of features for every centroid sampled in the
sampling layer.

Feature propagation layer As we want a per point prediction, we now have to project
the downsampled points back to the original number of points. This can be compared to
the upconvolution layers in a convolutional neuronal network (CNN) setting.
In PointNet++ [7] this is done by interpolation. Specifically, they use inverse distance
weighted average interpolation based on the three nearest neighbors. This leads to an
interpolation of the feature vectors. Additionally, they concatenate those feature vectors
with the corresponding feature from the set abstraction layers which they add through
skip connections.

3 Statistical Data Exploration

As can be seen from previous sections, data type plays an important role in choosing
solutions in further steps. Therefore, in this chapter we will have a closer look on the
data at hand and the methods to process them for efficient training.

3.1 Data Acquisition

Our data was gathered by our mentor Laure Vuaille from simulations performed at BMW.
We were given around 6200 simulation results as .csv files split into nine batches with each
batch containing around 700 simulations.

3 STATISTICAL DATA EXPLORATION 11

Each simulation includes the x and y coordinates of the point clouds as well as the
velocity in x- and y-direction (Ux and Uy) and the pressure at every point. The point
clouds represent a wide range of values. Besides that, we received a second .csv file which
contained the u inlet for every simulation. This variable specifies the velocity of the fluid
entering the control volume from its left side and has only a value in x-direction and a
value of zero in y-direction. Lastly, we were provided with one .stl file per simulation
result which defined the shape of the car as a 3D object. Projecting the 3D car shapes
to 2D yields a variety of car shapes which, in addition to the u inlet value, affects the
simulation result. A few examples of those shapes can be seen in figure 8.

Figure 8: Examples of different car shapes used for generating the CFD simulation samples

3.2 Data Cleansing

The received simulation results mentioned in section 3.1 represent each an irregular grid
that varies in size (reflected in the number of cells varying from thousands to hundreds
of thousands) to capture intricate details of the flow. Given that the considered models
take as input samples of the same structure, it was necessary to develop a method to
restructure the input grids, while in addition considering the cell points that contribute
more to the flow representation. For that, we compute the SDF previously introduced in
section 2.1 in equation 2.1 and see how the influence of the distance of the points from
the car and control volume boundaries affects the down-sampling error and study other
down-sampling methods in section 3.2.3.

3.2.1 Outlier Detection

Before studying the down-sampling of our samples, we have studied the distribution of
the target values (velocity and pressure) to detect possible outliers. The simulation solver
can predict solutions drawn from a different distribution than the rest of the data or
non-physical values that can affect the learning and performance of our model. With non-
physical we mean that these values are not in a range which is realistic from a physical
perspective.
Diagram 9a shows the distribution of u inlet. After the fluid enters the control volume
with the velocity u inlet we expect it to interact with the car which results in velocity
changes in x- and y-direction. One example would be that the fluid will slow down in
front of the car and accelerate in narrow areas - for example underneath the car between
the car and the floor.

3 STATISTICAL DATA EXPLORATION 12

(a) u inlet values for differ-
ent samples.

(b) Diagram of the Ux inlier
values

(c) Diagram of the Ux outlier
values

Figure 9: Digrams of the u inlet and the Ux inlier and outlier values

Yet what we have observed is that some simulations have non-physical target values. One
of those samples is represented in figure 10. To isolate these outliers from valid samples
that can be used, we first considered the z-score

zscore(x) = (x− µ)/σ (2)

where x is a placeholder for the Ux, Uy, or pressure values of the samples, µ is the mean
of the x values distribution and σ is its standard deviation.
To calculate the target value for one sample, we computed the averaged sum of all cell
points in one sample. We find every value that has |zscore(x))|> 3 and classify it as an
outlier.
We have observed that due to very high outlier values the mean and standard deviation of
all samples are shifted towards very high and unrealistic values which results in detecting
only a small number of outliers (around 3) when using the z-score.
After this observation, we considered defining bounds to isolate samples which we do not
consider as valid. For each sample:

• if ∃ a cell s.t. |Ux cell|> 50 then the sample is an outlier.

• if ∃ a cell s.t. |Uy cell|> 50 then the sample is an outlier.

• if ∃ a cell s.t. |p cell|> 1000 then the sample is an outlier.

After applying this method we detect around 17 outliers and remove them. The distribu-
tion of the sample mean values (sum of all cell values averaged over the number of cells)
of the inlier and outlier samples (e.g for Ux) is represented in the histograms in figure 9.

It should be also mentioned that before considering the outlier detection based the sam-
ples’ cells, we computed the average target value per sample and verified if these values
were in the predefined bounds but this method couldn’t isolate all outliers as the aver-
age does not capture the behavior of the internal cells. This has been discovered after
observing that error values explode in specific batches pointing out the existence of some
unidentified outliers which led to adapting a cell-based outlier detection.

3 STATISTICAL DATA EXPLORATION 13

Figure 10: The produced Ux flow for an outlier sample (case 6966)

3.2.2 Region Cropping

As the training data is generated by CFD software, where a minimal distance should
be ensured to mitigate the unwanted influence of certain boundaries on the flow, the
simulation data is typical rather large, shown in figure 11. For a neural network, this
additional piece of information does not add value. Therefore, we only kept the data
points in each sample which satisfy the conditions y ≤ 2 and x ≤ 7.

Figure 11: A given point cloud originally with x = 20 and y = 4.0.The yellow and red
lines show the borders of the cropped point cloud.

3.2.3 Points Down-Sampling

As we can see from figure 12, the density of data points around the car is clearly higher
than in areas far away. This is due to the fact that more points are needed to encode the
car shape as well as to capture drastic changes of flows around geometric variations.

Figure 12: The resulting data after cutting in figure 11. Before cropping there are 76071
points, and after cropping 31647 of them remain.

3 STATISTICAL DATA EXPLORATION 14

After cropping the region, we need a further down-sampling for efficient training. Now
the question is, how many points are sufficient to speed up the learning process on one
side and preserve important information on the other side? To answer this question, we
did another experiment shown in figure 13. In a first place, we define the considered
sampling methods:

SDF-Based Sampling: The first sampling method is the SDF-based sampling, intro-
duced in section 2.1. The signed distance function is slightly modified in the following
way: We calculate the minimum euclidean distance from each point in the point cloud
to the surface of the car as well as to the floor. Out of these two values we choose the
smaller one and assign it to the point. The smaller the assigned distance to each point,
the higher the probability that the point is chosen in the sampling process. Besides the
cars surface we also decided to incorporate the distance to the floor, since it is the only
solid boundary of our control volume and therefore has an impact on the fluid flow as
well.

Random Sampling: The random sampling chooses a fixed number of points randomly
from the original point cloud. Random sampling preserves higher point density close to
the car naturally. This comes from the fact that as already mentioned in the original
point cloud the point density close to the car is higher than elsewhere. Dense areas lead
to a higher probability of sampling a point from this area and sparse regions decrease the
chances of sampling a point from a certain area as illustrated in figure 14.

Farthest-Point Sampling: Finally farthest point sampling, as indicated by the name,
in every iteration the method samples a point which is located as far as possible from all
the points within a region. As a result, this leads to an evenly distributed point distribu-
tion across the control volume, as shown in figure 14. This approach is useful for tasks
like segmentation and classification which require higher space coverage compared to our
regression task [7].

Determining the optimal number of points to sample: We use the recovery error
to determine the number of centroids to sample. Recovery means back project the down
sampled data to the original size, and get the predictions on every point in the full point
cloud. We use the formula pc =

∑n
i

1
di
pi with

∑n
i

1
di

= 1 for back projection, pc is the
referring point value and di is the euclidean distance between point c and its neighbor
i. As shown in figure 13, all three down sampling methods achieve below 0.5% recovery
error when more than 4096 centroids are sampled. A larger number is preferred to achieve
higher accuracy, while the computational cost becomes more and more an obstacle for
pursuing this goal. Random sampling achieves the best recovery accuracy among the
three when the number of points is smaller than 8192. Farthest point sampling is slightly
better than SDF-based sampling.

3 STATISTICAL DATA EXPLORATION 15

Figure 13: The more points kept, the lower the recovery error. A set of centroids are sam-
pled through “SDF-based sampling”, “random sampling” or “farthest point sampling”.
Velocities and pressure information are kept to mimic the result of prediction. Then using
inverse distance weighted nearest n neighbors to recover the original point cloud. The
error is calculated as percent error per point.

Figure 14: The top left figure shows the original point cloud density. The result of the
three down sampling methods introduced in 3.2.3 are illustrated in the other three figures.

3.2.4 Physics-related Pre-Processing

To use the simulation data as training data for a machine learning task, using dimension-
less values simplifies the values, gives better insight into the relative size of the terms, and
eliminates the big scaling factors [3]. In our case, the presented RANS equations used to
produce the CFD simulation produce physical values, which are not dimensionless.

4 IMPROVEMENTS OF THEMODEL AND IMPLEMENTATIONSWITHIN THIS PROJECT16

To perform the non-dimensionalization of the data, we consider a physics-related pre-
processing method aiming at scaling the velocity and pressure values by predefined con-
stants and the input freestream u inlet.
Assuming that the output stream in x and y directions is in m · s−1 and given that the
input stream is also in m · s−1. Dividing every sample by its corresponding Uinlet elim-
inates the velocity unit. For the pressure values, the unit is Pa = kg ·m−1 · s−2, in this
case multiplying the mass density ρ[kg ·m−3] = 1.184 with the square value of the input
stream velocity norm [m · s−1]2 and dividing the pressure by the result eliminates the
pressure unit.

3.2.5 Machine Learning Pre-Processing

After performing the data cleansing, the physics-related pre-processing, and splitting the
data into 2/3 for training, 1/6 for validation, and 1/6 for testing, the data is normalized
before it is fed into the model. This is achieved by dividing each input or target value
by its maximum absolute value computed over all samples present in the training set.
A visualization of all input and target values for one sample are summarized in the
visualizations below 15.

Figure 15: The pre-processed data of a simulation consists of different of properties, from
left to right and top to bottom, velocity in x direction, velocity in y direction, pressure,
signed distance function, velocity of inlet, and car shape in mesh.

4 Improvements of the Model and Implementations

within this Project

4.1 Fluid Mechanics Induced Loss

To achieve higher accuracy as well as better generalisation of our model we decided to
use the approach of the Hidden Fluid Mechanics by Raissi et al.[8] presented in section
2.3 and adapt it to our needs. They use the Navier-Stokes Equations (NS) equations as

4 IMPROVEMENTS OF THEMODEL AND IMPLEMENTATIONSWITHIN THIS PROJECT17

additional loss terms to the mean squared error (MSE) loss while supervising only the
concentration of a passive scalar. This makes it possible to learn velocities and pressure,
without having access to the actual labels of those variables.
There are some fundamental differences in the problem setting of Raissi et al.[8] and ours.
Firstly, we have simulation data at hand which is time averaged, while they used time-
dependent data. Furthermore, we do not have the concentration of a passive scalar as a
supervised variable but the time averaged velocity vector field and the pressure scalar field.

In general, data is not used in its raw form to train a machine learning model. In-
stead it undergoes some preprocessing which in our case firstly physical preprocessing as
described in section 3.2.4 and afterwards machine learning preprocessing as outlined in
section 3.2.5.
Since we want to use partial differential equations, namely the RANS equations in our
loss, we have to adapt them to the preprocessed values, as the RANS equations expect
values with physical meaning as input.

∂ūi
∂xi

= 0 (3)

ρf̄i +
∂

∂xj

[
−p̄δij + µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρu′iu′j

]
− ρūj

∂ūi
∂xj

= 0 (4)

In the RANS setting, equation (5) corresponds to the continuity equation and (6) corre-
sponds to the momentum equation. Both are formulated in x and y direction in our case
since we are working in a 2D setting. The variable p corresponds to the pressure and ui
and xi represent the velocity and coordinate in x-direction for i = 1 and y-direction for
i = 2 respectively. ρ is the fluid density and µ is the viscosity of the fluid.
The bar over the variables indicates, that they are time-averaged, which is exactly what
the labels in our train data are. There are two changes we made to make the equations
suitable for our problem: Firtly, we ignore the term ρf̄i and secondly we replace the
term u′iu

′
j with τ . u′iu

′
j is the contribution of the viscosity-induced fluctuation around

the mean flow and is typically computed by more complex models which we do not cover
here. Instead we will model this term as τ and treat it as an unsupervised latent variable,
which we will try to learn by minimizing the fluid mechanics loss.
Combining the physical and the machine learning preprocessing we have to replace ūi, x̄i,
p̄ and uinlet in the following way, where uinlet is not part of the original RANS equations
but used as a scaling factor in the physical preprocessing:

xi = x̄i × xmli × xmaxi
(5)

ui = ūi × umli × ūinlet × uinlet ml (6)

p = p̄× ρ× pml × ū2inlet × u2inlet ml (7)

4 IMPROVEMENTS OF THEMODEL AND IMPLEMENTATIONSWITHIN THIS PROJECT18

uinlet = ūinlet × uinlet ml (8)

After applying the changes mentioned in the previous paragraph we obtain the following
non-dimensional RANS equations:

∂ūi
∂x̄i

umli × ūinlet × uinlet ml

xmli × xmaxi

= 0 (9)

(10)

∂

∂x̄j

1

xmlj × xmaxj

[
−p̄× ρ× pml × ū2inlet × u2inlet mlδij

+ µ

(
∂ūi
∂x̄j

umli × ūinlet × uinlet ml

xmlj × xmaxj

+
∂ūj
∂xi

umlj × ūinlet × uinlet ml

xmli × xmaxi

)]
− τ = 0

Those can be used in the loss functions, as they add a residual to the loss which has to
be minimized. If the differential equations, and therefore the physical laws are learned
by the network, the added residual will be very small - otherwise a bigger term will be
added to the overall loss.

Remark: In the beginning we thought that it would be possible to compute the deriva-
tives and second derivatives corresponding to the Jacobians and Hessians in an easy way
using automatic differentiation in Pytorch [5]. Unfortunately, this is not possible due
to the fact that Pytorch does not compute the Jacobian itself, but the Jacobian vector
product. This makes it impossible to compute the required derivatives in matrix/vector
form. To compute the required derivatives this means that we would have to compute
the derivatives for every entry in the prediction matrix - which is of dimensions [4096,
3] - separately. This leads to 4096 backpropagations through the whole network to the
inputs for only computing the derivatives of the prediction of the velocity in x-direction
with respect to x and y. We have to do the same for the prediction of the velocity in
y direction and the predicted pressure. This means only the computing the first deriva-
tives for one sample in one optimization step leads to 4096 × 3 backpropagations which
is unfeasible. We even need to compute second partial derivatives which leads to even
more backpropagations to verify our proposed approach of including the RANS partial
differential equations into our loss function.

4.2 Mask on the Loss

As mentioned previously, the characteristic values near the car surface are key points we
are checking, therefore, we add a mask on the loss function to emphasize higher prediction
accuracy on those points, shown in equation 11.

NewLoss(x) =
1

SDF (x) + c
× Loss(x) (11)

where c is a small constant to avoid dividing-by-zero problem.

5 RESULTS 19

4.3 Sampling methods - SDF based, random, farthest

The original PointNet++ architecture as explained 2.5 uses farthest point sampling in the
set abstraction layer, figure 14. As mentioned in section 3.2.3, there are additional two
methods available, namely “random sampling” and “SDF-based sampling”. To use the
different sampling methods in the PointNet++ architecture we implemented them using
Pytorch and replaced the sampling method in the Set Abstraction layer of PointNet++
with our sampling methods.

4.4 From classification/segmentation to regression

PointNet++ as introduced in 2.5 was developed to do either semantic segmentation or
classification on point clouds. As we want to predict three continous values for every
point, corresponding to velocity in x-direction, velocity in y-direction and the pressure,
we have to change the head of the PointNet++ architecture to our needs.

In the classification setting, the authors of PointNet++ suggest fully connected layers
after the set abstraction layers without the need of up-projecting the points to the origi-
nal number of input points. The number of neurons in the last layer of the fully connected
layers corresponds to the number of classes in the dataset.

The segmentation setting uses feature propagation layers after to the set abstraction
layers to up-project to the original number of points from the input space while having
skip connections from the corresponding set abstraction layers to the feature propagation
layers. The output dimension of the segmentation head is (N, k) where N corresponds to
the number of points and k corresponds to the number of segmentation classes. So every
point holds the probabilities for belonging to each of the classes.

As mentioned above, we want to predict Ux, Uy and p in a regression setting. Therefore,
we kept the feature propagation layers from the segmentation setting and added the fully
connected layers from the classification setting. We also changed the dimension of the last
layer in the fully connected network to the size (N, 3) where three corresponds to the three
values (Ux, Uy, p) we want to predict and N corresponds to the number of downsampled
points describing one sample. To be able to learn continuous values for our outputs we
also changed the loss function from a categorical cross-entropy loss to a mean-squared
error loss, which is suited for a regression problem.

5 Results

5.1 Overfitting

To verify the capability of the chosen neural network to handle the complexity of our
problem, we overfitted it to one sample and a batch of 16 samples from the training data.
In this trial we used random sampling in the setabstraction layer of the PointNet++. To
make it easier for the network to overfit on the batch of 16 samples, we selected all of
them with an u inlet between two and four m · s−1. Figure 16 shows the prediction of the

5 RESULTS 20

neural network for one of the 16 samples we overfitted it to. As one can see in figure 16,
the neural network learned the mapping from input to output quite well - which increased
our confidence that the chosen architecture is capable of learning how to approximate the
results of CFD simulations.

Figure 16: One batch, which consists of 16 samples from inlet range 2− 4m · s−1, is used
to train our neural network for 1000 iterations. The resulting model is tested with the
same samples. Errors are calculated as |prediction− target|

5.2 Training

After the overfitting trial was successfully finished, we trained the first group of models,
shown in figure 17, which we call our base models. The base models were trained using
physically preprocessed data only. The difference between the two models is that one
model was trained with SDF-based downsampling in the setabstraction layer and the
other one used random sampling in the setabstraction layer. After noticing that the test
error is lower than the validation error, we checked the prediction results of one sample,
which turned out to be close to a uniform prediction compared to the variations in the
ground truth values. This can be seen on the right side of figure 17.

After encountering that our model does not learn anything, we trained nine major groups
of models with different configurations to tackle the uniform prediction problem, and
to find out why models are not able to learn even though the train and test loss are
minimized. Table 1 gives an overview about the changes we applied to our baseline
model. The training processes can be see in figures 18 and 19.
As one can see, the train-validation loss curves are looking promising, but none of the
proposed training configurations solved our problem of close-to-uniform predictions as
mentioned before and illustrated in figure 17. No matter what model we trained, we
always got very close to constant predictions over our whole domain for the three target
values. These results led to us identifying possible sources for the behaviour of our trained
models which will be discussed in the following section.

5 RESULTS 21

Figure 17: First two trained models with a training data size of 1500, and a validation
data size of 500. The left diagram shows the train and validation loss with respect to
different sampling methods in the set abstraction layers. The right plots demonstrate the
prediction of velocities and pressure compared to the ground truth.

Base Set Abstraction layer Loss Mask on Loss Data
Physical + ML PhysicalModels No.

Baseline HFM Random SDF Farthest MSE SSE w/o SDF
Uinlet split No split Uinlet split

1 X X X X X
2 X X X X X
3 X X X X X
4 X X X
5 X X X X X X
6 X X X X X X
7 X X X X X X
8 X X X X X
9 X X X X X

Table 1: Variations of the model. More than one Xin one feature (same color columns)
means several sub-models are trained for comparison, and each contains one of the prop-
erties of the feature.

5.3 Factors Influencing the Model’s Performance

In this section we want to discuss the sources that might have led to the aforementioned
training results.

5.3.1 Data

First of all the data at hand could be the problem. Too little data to train a model
which captures the complexity of our problem would be an explanation. As we have the
problem, that we can not even make accurate predictions on the train data when training

5 RESULTS 22

Figure 18: Trained baseline models using Sum Squared Error (SSE)

a model with 2500 samples, we can rule out the available amount of data. If we had too
few train data a common scenario would be that we overfit on the whole train data and
we are not able to generalize well on the validation data. This means that in our case not
generalization is not the problem, but the learning part itself.

5.3.2 Problem complexity

A second explanation for the poor performance of our model could be due to the com-
plexity of the problem at hand. There is a huge set of parameters which influence the
wind flow around a car. Therefore, the suggested model has to capture a very complex
solution space.

Flow variation Firstly, the variation of the u inlet influences the flow. Higher inlet
velocities can lead to turbulent flows which result in more complex flow patterns, whereas
lower inlet values lead to laminar flows. We tried to determine if the variation in the
u inlet value leads to the bad model performance. This was done by dividing our data set
into smaller data sets which only consisted of training data from a certain u inlet range.

5 RESULTS 23

Figure 19: Trained baseline models using Mean Squared Error (MSE)

This leads to a lower complexity of the problem since the model now only has to learn
how the different geometries of the car influence the airflow around it. One example for
this approach is that we only used train and validation data which has an u inlet which
is between 2 and 4 m · s−1, compared to an overall range of u inlet which is between 2
and 14 m · s−1.
Again, we got the same result as before. We could not observe any improvement, which
is why we can exclude the variation in the u inlet parameter at least as the only source
for our poor performing model.

Geometric variation Unfortunately, we are not able to proof nor disproof the as-
sumption that the variation in geometric presentations of the cars is to high and therefore
induces too much complexity in the problem. We didn’t have a simple way of tracking
equal car shapes and grouping them together to execute a similar test as the flow variation
test in the previous section. We just mention the variation in the geometries of the car
as a potential reason why we are not able to produce accurate predictions.

5.3.3 Model

Another reason could be the model itself. Either because the architecture was originally
developed to solve classification and segmentation tasks or because the complexity of the
architecture is too small.
The former assumption has a solid ground, as for classification as well as for segmentation
one needs information from the whole point cloud to produce a prediction on a global
feature. What is meant by global feature is that in a classification setting prediction is
of the class of the entire point cloud, which could be for example a car or a plane. In a
segmentation setting the goal is to segment for example different parts of a car like the

6 CONCLUSION AND OUTLOOK 24

wheels or the doors. In comparison, we want to predict a value for every point in the
point cloud which can take any physically sound value. The domain of possible values in
this case is significantly larger than in the case of classification or segmentation
The second drawback of our model could be, that there are too few parameters in the
model to capture the complexity of the given problem. We did investigate that problem
by adding multiple dense layers after the output of the PointNet++ model, which again
did not improve the performance of our model.

5.3.4 Downsampling method

As already illustrated in 4.3, we tried different methods of sampling the centroids in
the setabstraction layers of the PointNet++ since we initially thought that farthest-point
sampling does not fit our needs. This is why we implemented the two other downsampling
methods (random sampling and SDF-based sampling). Neither of these methods provided
an added value in terms of accuracy of our predictions, which led us to the assumption
that the downsampling method is not the reason for the bad performance of our model.

5.3.5 Hyperparameter tuning

Another possibility to achieve better results is to do hyperparameter tuning. In our
architecture we consider for example the the learning rate, the number of setabstraction
layers and the number of centroids in each setabstraction layer as hyperparameters. One
problem we encountered towards the end of the project was that there are only 16 centroids
left in the last setabstraction layer which might be a too small number as we start with
4096 points as an input to the PointNet++. We started training a new model which has
only three instead of four setabstraction layers and instad of 16 there are 512 centroids
in the last setabstraction layer. We hope that this new architecture leads to better
training performance. Furthermore, we started another training with the aforementioned
changes and an additionally changed learning rate from 0.001 to 0.0001. Unfortunately,
the training process is not yet finished before the deadline of this report, which is why
we cannot include the findings into it. If we get the results soon enough we will include
it into our presentation.

6 Conclusion and Outlook

In this work, we studied the application of deep learning models in the prediction of fluid
flow’s characteristics such as the velocity in x and y directions and the pressure. In section
2, we reviewed some applications of deep learning networks in the fluid dynamics field.
The settings in the reviewed models consisted of a constant u inlet and/or a limited num-
ber of simple shapes or airfoils. The studied data in the reviewed literature is structured
which qualifies the problem to be studied as a computer vision optimization problem.
However, in our case, the input velocity u inlet can take on a wide range of values and
car shapes are varying and fairly complex compared to primitive shapes. Moreover the
given data produced by the CFD simulations are irregular point clouds which means that
every point cloud can have a different number of data points. We, therefore, opted for a
different model that was not yet used in a regression setting but showed promising results

6 CONCLUSION AND OUTLOOK 25

in classification and segmentation settings, the PointNet++. We adapted the architecture
to be used as a regression model and pre-processed and down-sampled the given data to
ensure faster and more effective training. The training results showed the ability of the
model to overfit to a small number of samples. However, it does not capture detailed
flows for a high number of samples with varying car shapes and a wider range of input
velocities.
Finally, we want to draw the attention to potential improvements of the model’s perfor-
mance by performing hyperparameter tuning and considering a different framework (for
example TensorFlow [10]) to compute the gradients needed for the hidden fluid mechanics
loss. A more complex model, with a loss that controls if the physical laws are respected
might lead to improved results.

Bibliography

References

[1] Glenn Research Center and NASA. Navier-Stokes equations. url: https://www.
grc.nasa.gov/WWW/K-12/airplane/nseqs.html.

[2] Chen Junfeng, Viquerat Jonathan, and Hachem Elie. “U-net architectures for fast
prediction in fluid mechanims”. In: (). url: https://arxiv.org/abs/1910.13532.

[3] Thuerey N. et al. “Deep Learning Methods for Reynolds-Averaged Navier-Stokes
Simulations of Airfoil Flows”. In: (2019). url: https://arxiv.org/pdf/1905.
13166.pdf.

[4] Thuerey N. et al. Github repository: Deep-Flow-Prediction. url: https://github.
com/thunil/Deep-Flow-Prediction.

[5] Pytorch. Pytorch. url: https://pytorch.org/.

[6] Charles R Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation”. In: arXiv preprint arXiv:1612.00593 (2016).

[7] Charles R Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space”. In: arXiv preprint arXiv:1706.02413 (2017).

[8] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. “Hidden Fluid Me-
chanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow
Visualization Data”. In: arXiv preprint arXiv:1808.04327 (2018).

[9] Bhatnagar Saakaar et al. “Prediction of Aerodynamic Flow Fields Using Convolu-
tional Neural Networks”. In: (2019). url: https://arxiv.org/pdf/1810.08217.
pdf.

[10] Tensorflow. Tensorflow. url: https://www.tensorflow.org/.

[11] Daniel Vieira and Joao Paixao. Vector Field Neural Networks. 2019. arXiv: 1905.
07033 [cs.LG].

[12] Wikipedia. Computational fluid dynamics. url: https://en.wikipedia.org/

wiki/Computational_fluid_dynamics.

[13] Wikipedia. Turbulence. url: https://en.wikipedia.org/wiki/Turbulence.

[14] Guo X., Li W., and Iorio F. “Convolutional neural networks for steady flow approx-
imation”. In: Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2016).

26

https://www.grc.nasa.gov/WWW/K-12/airplane/nseqs.html
https://www.grc.nasa.gov/WWW/K-12/airplane/nseqs.html
https://arxiv.org/abs/1910.13532
https://arxiv.org/pdf/1905.13166.pdf
https://arxiv.org/pdf/1905.13166.pdf
https://github.com/thunil/Deep-Flow-Prediction
https://github.com/thunil/Deep-Flow-Prediction
https://pytorch.org/
https://arxiv.org/pdf/1810.08217.pdf
https://arxiv.org/pdf/1810.08217.pdf
https://www.tensorflow.org/
https://arxiv.org/abs/1905.07033
https://arxiv.org/abs/1905.07033
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
https://en.wikipedia.org/wiki/Turbulence

	Abstract
	Introduction
	Problem definition
	Computational fluid dynamics (CFD)
	Why consider alternatives to CFD simulations?

	Project Goal

	Related Work
	Encoder-Decoder CNN
	U-Net
	Hidden Fluid Mechanics
	Vector Field Based Neural Networks
	PointNet++

	Statistical Data Exploration
	Data Acquisition
	Data Cleansing
	Outlier Detection
	Region Cropping
	Points Down-Sampling
	Physics-related Pre-Processing
	Machine Learning Pre-Processing

	Improvements of the Model and Implementations within this Project
	Fluid Mechanics Induced Loss
	Mask on the Loss
	Sampling methods - SDF based, random, farthest
	From classification/segmentation to regression

	Results
	Overfitting
	Training
	Factors Influencing the Model's Performance
	Data
	Problem complexity
	Model
	Downsampling method
	Hyperparameter tuning

	Conclusion and Outlook
	Bibliography

