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           Simplified car design cycle

Problem 
● Iterative approach 

● After every design step -> CFD simulation

● High accuracy trough CFD simulations, but 

costly and time consuming optimization 

process

[11]

[12]

1. Problem Definition 
Why are CFD simulations so costly? 

● Solves the Navier-Stokes equations for every cell in 

our domain for a lot of timestamps 

● Generates  a well fitting mesh + data preprocessing

● Speedup through usage of Reynolds–Averaged 

Navier-Stokes Equations

BUT the mesh generation and the computation are still 

consuming a lot of time.



● Adapt and evaluate a Deep Learning architecture to predict the 2D airflow characteristics (velocity in x 
and y directions and pressure) .

● Assess the performance of the chosen model given the complexity of the problem, namely the varying 
input velocities and car shapes.

Goal of the project
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2. Goal of the Project



First milestone meeting

Problem understanding & 
literature review

  

Data management and 
analysis & choosing 
model 

  

                                Second milestone meeting

Implementation 

.

  

Third milestone meeting

Evaluation of results and 
writing report
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3. Workflow
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● Save data 
● Run slurm jobs

Data generation 
at BMW LRZ login node LRZ compute 

node

Local computer 

● Around 6200 simulations 
● Exported input as well as 

results to .csv files + .stl files 
containing car shapes

● Prepare scripts to run on LRZ 
cluster 

● Test on small subset of the 
dataset to make sure they 
work correctly

● Save data for now

● Run scripts on the whole 
dataset

● train model
● preprocessing and 

postprocessing

Rechnerhalle BMW 
computation node 

● Save data
● Run some first tests on bigger 

dataset, depending on the 
computational power of 
Rechnerhalle 

● Run scripts on the whole 
dataset

● train model
● preprocessing and 

postprocessing

Security issues

4. Data Management and Resources



● 6200 simulations gathered by our mentor at BMW
○ One simulation (.csv) contains values: Ux, 

Uy, x, y, pressure, force, drag force only, lift 
force only; plus 3D car mesh (.stl)

○ U_inlet
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5. Data Profile

Figures: 
Left: Ux, Uy, pressure, Signed Distance Function (SDF), U_inlet, 
car shape projected on 2D.
Upper: Examples of of different car shapes used for generating 
the CFD simulation samples



1. Train the data from a computer vision point of view -> structured grids (images)

2. Directly work with point clouds

3. Adapt physical constraints to boost the performance (accuracy).
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6. Literature Research



● Setting: Laminar Flow, constant inlet velocity, airfoils or simple shapes, structured grids 
● Shape representation: Signed Distance Function (SDF)
● Feature extraction : Convolutions, images reconstruction:  Deconvolutions
● Mask on MSE: Depending on the sign of SDF
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Encoder-Decoder CNN [9, 14]

6. Literature Research

                        Encoder-Decoder CNN [14]



● Using skip connections by concatenation. 

● Variations of U-Net: Stacked U-Net, Parallel U-Net, Coupled 
U-Net.

● Setting:
○ Varying inlet freestream (Angle of Attack in range +/-22.5), 
○ 1505 airfoil shapes, 
○ 128²x3 input tensors, 128²x3 output tensors.

● Using of physical-related preprocessing.

● Our setting: unstructured point clouds, different shapes of cars 
and varying inlet freestream. 
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U-Net [2,3]

6. Literature Research

Ground Truth - Ux 

Prediction - Ux 

Overfitting on one sample experiment
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Hidden Fluid Mechanics [8]

6. Literature Research

Key ideas
● Leverage physical laws in model training (loss function) 
● Infer the velocity and pressure field from concentration of a passive scalar
● Learn the mapping: (x, y, z, t) -> (c, d, u, v, w, p) 

Non-dimensional transport equation for a 

passive scalar c and d = 1-c

Non-dimensional Navier-Stokes equations

Continuity equation for incompressible flows

NO trainable parameters, but computed 

deterministically using automatic 

differentiation

Trainable neural 

network
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Vector Field Based Neural Network [11]

6. Literature Research

Analogue to the incompressible fluid mechanics.

● Physical laws preserved

● Scalability is unknown, especially given 

high-resolution fields; directly modifies the 

coordinate; accuracy is limited Figure: From left to right, first row presents input data, the architecture, and 
the transformed data by the vector field layer. Second row presents the 
vector field and the space distortion.[11]
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PointNet++ [7]

6. Literature Research

● Set abstraction layer
○ Sampling & grouping
○ Unit PointNet [6]

● Feature propagation layer
○ Interpolation
○ Feature concatenation

● Designed tasks
○ Classification
○ Segmentation
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7. Data Analysis

outlier 
detection

cropping the 
pointcloud computing SDF sampling 

centroids

concatenating 
old and new 

features 

physical 
pre-processing

outlier if there exits a 
cell s.t: 
|Ux_cell| > 50
or
|Uy_cell|> 50
or
|p_cell| > 10e3

cut all points with: 
● x > 7
● y > 2

Establishes the spatial 
relation between the 
point in the point cloud, 
the surface of the car, 
and the floor of the 
control volume. 

sampling 4096 points 
from the original 
pointcloud

data consists now of x, y, 
z, Ux, Uy, p, sdf, u_inlet

df['Ux']   /=   uinlet

df['Uy']   /=   uinlet

df['p']     /=   (rho * uinlet ** 2)

df['x']     /=    df['y'].max()

df['y']     /=    df['y'].max()

Pre-Processing Pipeline 

ML
pre-processing

Use training set to 
determine the absolute 
max of each feature and 
use it to normalize every 
feature
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7. Data Analysis

● Outliers are samples drawn from a different data distribution
● Outliers don’t have physically sane values  (very high values whereas inlet velocity range from 2 to 14 

m/s )
         Can disturb the performance of the model

● Detection : 
○ z-score, 
○ bounds for the mean value of each sample, 
○ bounds for the value for each point of the point cloud  

Outlier Detection

            The produced Ux flow for an outlier sample (case_6966)



Region Cropping 
● CFD solver produces large point 

clouds, which are not needed for 
a ML problem 

Points Down-Sampling
● Random 
● SDF-based 
● Farthest point 
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7. Data Analysis

Dimension of an original point cloud and the respective cropped version

Original point cloud and the results applying the different sampling methods
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7. Data Analysis



● After set abstraction and feature propagation layers, the output is of the same shape as 
the input 
○ Problem: Both layers only use ReLu activation functions which results in positive 

predictions only 
○ Solution: Add an additional fully connected dense layer without activation function 

to the head of the network to predict negative values as well
● Loss-function from categorical cross-entropy loss to a mean-squared error loss
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From Classification/Segmentation to Regression

8. Adapted Architecture 
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Fluid Mechanics Induced Loss - Reynolds Averaged Navier-Stokes (RANS) 
equations

8. Adapted Architecture 

mass conservation:

momentum conservation:

��

● Overall 4 equations (x- and y-direction for both 
mass and momentum conservation

● Adaptation for usage with preprocessed data 
● RANS equations need physically meaningful 

values as input 
● For example replace          by  
● 𝛕 is called viscosity-induced  fluctuation  

around the mean flow and is typically 
computed by more complex models
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Fluid Mechanics Induced Loss - Network Architecture adaption

8. Adapted Architecture 

...

...
...

...
...

x, y, sdf, 
u_inlet

Ux

Uy

p

𝛕

PointNet++

● Deploying automatic differentiation to calculate the derivatives of the 
predictions w.r.t. x and y 

● First and second derivatives 
● 𝛕 is unsupervised and should be learned by minimizing the physics 

induced loss terms 

Physics induced loss terms: 
● use differential equations from previous slide 
● differential equations approach zero when fulfilled 

Loss = means squared error loss + differential equation loss 
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Fluid Mechanics Induced Loss - Problem

8. Adapted Architecture 

Possible solution: Compute one backpropagation per predicted value w.r.t. to the input coordinates 

● Results in the desired derivatives we need 

● Computationally very costly -> not possible in our problem setting 

● Example: To compute only the derivative of Ux with respect to x needs 4096 backpropagations

Problem:
● PyTorch doesn’t allow to compute Jacobians but Jacobian Vector Products 

● Example: For the derivative of a vector w.r.t. to a vector one gets back a vector (should be a matrix)

● CPU requirement
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Mask on the Loss

8. Adapted Architecture 

● Emphasize higher prediction accuracy on points close to car surface or floor
● Indicate impenetrable boundaries

Figure: Signed Distance Function. Darker color implies closer to the car 
surface or floor, and will be weighted higher in loss computation.

SDF

SDF(x) is the Signed Distance Function at point 
x; c is a constant to avoid divide-by-zero problem



● Implemented SDF-based 
sampling and random 
sampling in Pytorch

● Usage in the set abstraction 
layers of PointNet++ [7]
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Sampling methods - SDF based, random, farthest point

8. Adapted Architecture 
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Overfitting 

9. Results

Figure: Predictions (left column), ground truth values (middle column), absolute error (right column). The model is overfitted with 
one batch (16 samples) from unnormalized U_inlet in range [2, 4]; 1000 iterations; tested with one of training samples.
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Training with Model Variations

9. Results



An example of training results
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9. Results

Figure: One example of train/validation loss (left diagram). Prediction of values of interests (left column in right grids), ground 
truth values (middle column in right grids), absolute error (right column in right grids).



1. Data
2. Problem complexity

a. Flow variation: Mixed turbulent flows samples with laminar flows samples due to 
variation of u_inlet.

b. Car geometry variation
3. Model: Model capacity might be too small
4. Downsampling methods: No significant difference between downsampling methods
5. Hyperparameter tuning: learning rate, numbers of SA layers, numbers of centroids in 

SA layers
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Factors Influencing the Model’s Performance

9. Results



● PointNet++,  with our current hyperparameter setting,  is not able to capture the detailed 
flow fields. 

● In the current state, PointNet++ predicts a nearly uniform distribution of values for all 
point clouds

● The factors that may influence the performance of the model were studied
● Hypothesis have been formulated and later ruled out with different experiments
● Using a different architecture: 

○ Hidden Fluid Mechanics (considering Tensorflow as a platform to solve the gradients 
computation problem),

○  U-Net (after processing the unstructured point clouds to structured grids).
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10. Summary 
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Thank you! 

Deep Learning in CFD @ BMW

Felix Asanger, Meng Liu, Thana Guetet
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● 3 x meetings/week

○ Weekly report with the 

mentor

○ Sprint meeting with the 

mentor

○ Internal meeting

● Several platforms to boost 

cooperation

3. Communication and Data Management
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U-Net [2, 3]

5. Literature Research

              U-Net architecture [3]
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Inlet freestream distribution - Inliers and outliers of Ux
6. Data Analysis
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Training results
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Choose number of centroids


