
TECHNICAL UNIVERSITY OF MUNICH

TUM Data Innovation Lab

AI in Digital Car Design for Pedestrian Safety

Authors Chen Xu, Katharina Oberst, Shubham Khatri, Willem van Hove
Mentor(s) PhD. Candidate Laure Vuaille (BMW Group)
Co-Mentor Dr. Nada Sissouno (Department of Mathematics)
Project Lead Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier (Department of Mathematics)

Feb 2020

Abstract

This project investigates the use of data-driven digital car design for pedestrian safety.
The BMW group provided the data for the project from finite element simulations. The
goal of this project is that given an unknown car, the most similar car can be fetched from
the data lake. Next, the differences between these two cars can be compared. We tackled
this problem by developing an algorithm that finds the closest car to a provided unknown
car and then computes global and localized geometric as well as the non-geometric differ-
ences between the two. These results are provided in a concise human-readable format.
We perform several data preprocessing steps, which are crucial for adequate change de-
tection. In order to find the closest matching car, we extract high level geometric features
from the point cloud. We employ a mixture of the modified K-Nearest Neighbor and
the Random Forest Model to find the closest matching car using the extracted geomet-
ric features. Using the detected closest car and the unknown car, we extract the global
differences. To extract the localized differences, we perform region splitting and compute
the differences in the extracted regions. We use a combination of slicing and Quadtree
to perform region splitting. In each of these regions, we use Hausdorff distance to detect
the geometric differences and K-Dimensional Tree along with Sparse Change Detection
to find non-geometric changes. The pipelined model was tested on a test set of 10 new
point clouds, where we verified the accuracy of the developed algorithm. We were able to
verify that the developed algorithm can detect major as well as minor changes efficiently
and accurately and present them in a human readable manner.
Keywords: Point Cloud Comparison, Point Cloud Registration, Point Matching, Slicing,
Correspondence.

Contents

1 Introduction 1

2 Data 1
2.1 Data Set . 2
2.2 Data Preprocessing . 3

3 State of the art 7
3.1 Point cloud registration . 7
3.2 Point cloud segmentation . 8
3.3 Point cloud surface reconstruction . 9

4 Applied Methods 9
4.1 High level feature detection . 10

4.1.1 Bounding Box . 10
4.1.2 Feature Analysis . 10
4.1.3 Car Matching . 14

4.2 Low level changes detection . 14
4.2.1 Slicing and slice correspondence . 14
4.2.2 Dense variable comparison method 15
4.2.3 Sparse variable comparison method 16
4.2.4 Geometric comparison . 18

5 Results 18
5.1 Pipeline . 18
5.2 Car Matching . 18
5.3 Low level changes detection . 19

6 Conclusions 23

Bibliography 26

A Appendix 27

1 INTRODUCTION 1

1 Introduction

About 14% of all road accidents involve pedestrians and happen in urban areas where
speeds are moderate. The head counts as one of the most frequently injured body region.
Therefore, strict regulations are enforced to minimize the impact on the head during a
collision. Abiding by these regulations has become a big part in the car development
process [1].
The potential risk of head injury in the event of a vehicle hitting an adult or a child,
is estimated using a series of impact tests, which are taken at moderate speed using an
adult or child head form impactor [1]. The injury criterion that is used to measure the
body form impactor is the Head Injury Criterion (HIC) [17] [7]. The HIC value is based
on the average value of the acceleration over the most critical part of the deceleration.
Regulations worldwide prescribe a maximum allowed HIC value.
The design of the anterior of a car is crucial for pedestrian safety during a vehicle-
pedestrian accident. In order to reduce the risk of injury, there are many ways to improve
the pedestrian protection performance. This can be done by adapting the design of the
engine hoods in various ways, or using new materials designed to have desirable properties
[13].
A long iterative design process precedes the introduction of a new car. Crash tests are an
important aspect in assessing the safety of a car during the design process. Performing
crash tests for each iteration of a car is expensive. Numerical simulations offer a cheap
alternative and allow an engineer to predict the outcomes of a crash test. One of the
most common simulation methods used is the Finite-Element-Method. Running such a
simulation can take up to a full working day.
Currently, the development process relies heavily on human expertise. With technolog-
ical advancements the possibility to automate the digital development process emerges.
Artificial Intelligence (AI) could make the development process less reliant on human
expertise. The goal of the project is to implement an intelligent system that is able to
identify the similarities and differences of car components between car models. This can
be used to aid an engineer to improve the safety of a car.
This paper starts by introducing the data set, and several preprocessing methods are
discussed. Next, some state-of-the-art approaches regarding point cloud processing are
discussed. Chapter 4 describes the methods applied in this project in detail. These
methods are combined in a pipeline consisting of two steps: finding the closest match and
local change detection. The performance of the pipeline results are presented, validated
and discussed in the final two chapters.

2 Data

For the given problem, we were provided with two data sets, the first being the training
set, used for the algorithms that were developed. The second data set was provided for
validation of the results obtained from the developed algorithms.
In order to tackle the given problem, it was critical to carry out a preliminary data
analysis on data set one, which helped us in gaining an insight into the patterns and
distribution of the data. Based on the type and distribution of features, appropriate

2 DATA 2

choices for preprocessing and algorithms were made, which are described in sections 2.2
and 4.

2.1 Data Set

The two provided data sets come from Finite Elements Models (FEM) developed at BMW
to test various properties of the car. The first data set was organized by car families, each
having several car models, and each of these car models having several point clouds. They
were all clustered similarly based on car family, car model and model iteration as shown
in Figure 1.

Figure 1: Point cloud labeling.

All the point clouds belonging to a car model were an iteration over the base model, and
each of these iterations corresponds to a few geometric changes or property changes.
The first data set consists of a total of 173 point clouds, most of which had approximately
3∗105 points. Each point in these point clouds consists of positional information in terms
of X, Y , Z coordinates, four bulk properties, and 2 contact artifacts. All the feature
names except X, Y , and Z were masked in the provided data.
Since each point cloud consists of a large number of points, each having several features,
we decided to analyze the distribution of these features in each point cloud. We started
by looking at the distribution of the features in the space. Figure 2 shows the distribution
of var 0 and var 4 in X and Y directions. We observe that while some of the features are
continuously distributed over the space, like var 0 as shown in Figure 2a and 2c. Others
like var 4 show a discontinuous distribution over the space, indicating sparsity in the
feature values.
To further investigate the distribution of the features, we analyze each feature indepen-
dently using histograms, as shown in Figure 3. We can observe in Figure 3a that the
number of points with X close to 1500 is considerably small, which suggests the presence
of outliers in the data. We also observe that the var 0 is highly skewed towards 0, with
the existence of some data points having considerably high data values. The data points
having higher values either represent outliers in the data set or indicate some component
of the car, which has a considerably high value of this variable. We also observe that
var 4 is indeed a sparse feature with 0 values for most of the points. About 1% of the
points in a point cloud have a non zero value for var 4.
We also decided to employ some preprocessing steps to eliminate outliers, which is further
described in section 2.2. In addition to this, wherever necessary, the point clouds were
scaled using an appropriate scalar model, to provide equal importance to each feature.
Based on the study and evidence provided above, we classify these variables into two
categories, namely dense and sparse. Sparse features are those who have zero values for
a sufficiently large number of points in any point cloud, and dense features are those who
have a finite, non-zero value for a sufficiently large number of points in any point cloud.

2 DATA 3

(a) Variation of feature var 0 across X. (b) Variation of feature var 4 across X.

(c) Variation of feature var 0 across Y . (d) Variation of feature var 4 across X.

Figure 2: Feature distribution plots for var 0 and var 4 for all the cars.

The second data set consists of 10 point clouds, the first being the reference, and the
other 9 were derived from this car model. Each of these clouds consists of some geometric
and non-geometric changes. All the point clouds in this data set have a similar data
distribution as the first data set. Additionally, we were provided with a list of changes
made to each point cloud and was therefore used for validation of the developed algorithm.
In the following sections, these changes are also referred to as labels.

2.2 Data Preprocessing

Based on the preliminary studies described in section 2.1, we carry out a detailed analysis
of outlier treatment and faulty data detection. We first look for the faulty point clouds,
which could have problems like the absence of windshield or comparatively low point
count. This is done to make the model unbiased. Figure 4a shows one such point cloud;
we can also see in Figure 4b that some of the provided point clouds, especially car model
”A a”, have significantly low relative point count, these point clouds were excluded from
the analysis.
After the removal of the faulty point clouds, we perform outlier removal treatment on the

2 DATA 4

(a) X coordinate distribution.
(b) var 0 distribution showing skewness to-
wards the 0.

(c) var 4 distribution showing most of the
values are 0.

(d) Zoomed plot for var 4, indicating the
sparsity in the values.

Figure 3: Distribution of the features for one car.

(a) Faulty point cloud: missing windshield. (b) Number of points in each point cloud.

Figure 4: Faulty point clouds in the data set 1.

remaining point clouds. We observe that some of the point clouds have some points which
are not a part of the car, as shown in Figure 5a. To automatically detect and remove these
points, we utilize the statistical outlier removal algorithm [25]. This algorithm computes
the average distance of any point to its neighbors and marks a point as an outlier when it
is far from its neighbor compared to the average point cloud. It then takes the ”number of
neighbors” (nn) and standard deviation ratio (std ratio) as deciding parameters. The nn
parameter defines the number of nearest points to consider while computing the average
distance of each point. The std ratio parameter sets the threshold based on the standard
deviation of the average distances across the point cloud. Using this algorithm, we were
able to detect the outlier points in all the given point clouds. Figure 6b shows the detected
outlier for the point cloud shown in 5a, the detected outliers are highlighted by red color.
Due to the very nature of the algorithm, increasing the nn or std ratio parameter causes a
reduction in the number of points detected as outliers. Since the algorithm uses the stan-

2 DATA 5

(a) Point cloud with outlier points at the
left and the bottom of the car.

(b) Red points display the detected outliers
using the statistical outlier detection algo-
rithm with the optimum parameter choice.

Figure 5: Outlier treatment.

dard deviation ratio as the threshold, it can cause some of the inner points to be classified
as an outlier when the sampling of points is not homogeneous or near the boundaries of
the point cloud. Hence, our objective is to minimize the classification of inliers classified
as outliers and maximize the classification of actual outliers as outliers.
To solve this problem, we perform a parameter space search across the std ratio values
and nn values. We select the lowest possible value of nn and std ratio for which the change
in the number of points detected as an outlier is sufficiently small. A plot for best values
is shown in Figure 6, using these optimum parameters, the outliers were removed from
all the point clouds.

(a) Parameter: std ratio. (b) Parameter: nn.

Figure 6: Parametric study for number of points classified as outlier.

The next preprocessing step is motivated by the idea that any rigid body transformation
to the entire point cloud is not characterized as a change in the point cloud for this specific
problem. Hence to nullify such changes in the point cloud, we try to detect and apply the
rigid body transformation that would bring the two point clouds as close as possible. To
achieve this goal, we employed the Iterative Closest Point (ICP) algorithm, which tries
to minimize the distance between two point clouds[6]. ICP takes two point clouds, one
as the source and second as the target, and tries to bring the source close to the target.
Each iteration of ICP performs the following three steps:

• Find correspondence set K = (p,q) from the target point cloud P, and source point
cloud Q, using KDtree[14].

2 DATA 6

• Update the transformation matrix T by minimizing the objective function E(T)
described below.

E(T) =
∑

(p,q)∈K

‖p−Tq‖2. (1)

• Apply transformation T on the source point cloud.

Since the first step of ICP is based on the computation of a correspondence set, it is
usually recommended to provide an initial transformation, which can result in a larger
and better correspondence set. The provided point clouds are denser in the front of the
car (hood side) than the back (windshield side); we exploit this information in developing
the initial transformation. First, we compute the minimum volume bounding box [3] for
both source and target point cloud, as shown in Figure 7. For each bounding box, we find
the point O, and using the position of O, we calculate initial translation transformation,
further using the relative alignment of axis AB about the point O, we also detect the
initial rotational transformation. These transformations are then applied to the source
point cloud before performing the ICP.

Figure 7: Minimum volume bounding box for the point cloud. The point O is used for
detecting initial translation transformation while axis AB is used to detect the initial
rotational transformation.

For change detection procedures used during our analysis, we are not interested in the
windshield of the car since any changes to the front of the car will be of most influence
for the HIC value of the car. During analysis of the car models small slices were taken of
the car along the X-axis, the axis along which a car normally moves. Of these slices the
maximum value along the z-axis, the vertical axis, among all points was measured. Here
we observe a smooth line across the hood and another smooth line over the windshield,
both with a different slope. This is plotted for 5 randomly selected cars in Figure 8a. At
the point where this slope changes most, the kink, the first derivative makes a jump, see
Figure 8b. This jump is used to find the point where the hood ends and the windshield
begins. For the second derivative where this kink is also clearly visible as a spike, the
reader is referred to Figure A.1. Using the position of this kink, the car model is separated
into two parts: the windshield and the front of the car.

3 STATE OF THE ART 7

−1000 −500 0 500 1000 1500
x

0

200

400

600

800

1000

1200

1400

m
ax
 z

car A_a_4
car A_b_5
car B_a_1
car B_a_8
car A_d_2
car A_c_9

(a) Max Z value to X.

−400 −200 0 200 400 600 800 1000
x

−50

−40

−30

−20

−10

0

dz
_m

ax
/d
x

car A_a_4
car A_b_5
car B_a_1
car B_a_8
car A_d_2
car A_c_9

(b) Derivative obtained using finite differences.

Figure 8: Kink visualized for 5 randomly selected car.

3 State of the art

Based on the preprocessed data from the previous chapter, several state-of-the-art meth-
ods were explored for performing the comparison of the preprocessed point clouds. For
point cloud registration, both rigid and non-rigid point cloud registration are introduced
in this section. Afterwards, some point cloud segmentation approaches are discussed.
Finally, one point cloud surface reconstruction method - alpha shape - is considered.

3.1 Point cloud registration

Point cloud registration is also known as point matching. It focuses on finding the cor-
respondence between two point clouds. Typically, there are two types of point cloud
registration: rigid and non rigid.
Rigid body point cloud registration investigates the transformation between two point
clouds such as rotation and translation. One classical rigid point cloud registration is
Iterative Closest Point (ICP) [6], which was applied by us for the preprocessing step.
Another group of point cloud registration is the non-rigid one. Compared to the rigid, it
can also be used to detect the deformation of the point cloud. Two non-rigid point cloud
registration approaches are introduced.
Coherent Point Drift (CPD) can be used to describe the deformation of the two point
clouds [15]. Through a Gaussian mixture model, the algorithm tries to fit the source
point cloud to the target point cloud by maximizing the likelihood. The output of the
CPD is the displacement field, which indicates the movement of the point cloud. The
displacement field is defined as:

−→u =
−→
R1 −

−→
R0 (2)

where
−→
R1,
−→
R0 are the position of two point. −→u is the displacement vector. We can utilize

the displacement matrix to detect the movement of the point in a very local manner.
Global and local mixture distance (GLMD) is another classical non-rigid point cloud
registration [24]. It includes two steps: correspondence estimation and transformation

3 STATE OF THE ART 8

updating. For this algorithm, a local distance and a global distance are defined. The
global distance is to measure the squared Euclidean distance between two point clouds.

Gaibj = G(ai, bj) = ‖ai − bj‖2 (3)

Local distance measures the similarities between point clouds and is defined by:

Laibj = L(ai, bj) =
K∑
k=1

‖N(ai)k + (bj − ai)−N(bj)k‖2 (4)

where K is the number of neighboring points, N(ai)k, N(bj)k are the Kth closest point.
Next, the two distances are combined to obtain a cost matrix. Based on this cost matrix,
the correspondence between two point clouds is estimated by minimizing global or local
structural differences.

3.2 Point cloud segmentation

Currently, one of the most notable method for supervised point cloud segmentation
method is PointNet [19]. First published in 2016 by scholars from Stanford university,
PointNet is a powerful neural network architecture. It can be used for a wide range of
applications. With regard to this project, the ability of the PointNet architecture to seg-
ment the car is of most interest. The code for PointNet is open source and available under
MIT license. In 2017, PointNet’s successor PointNet++ was released [18]. The ShapeNet
database [10] can be used for training the neural network, after which transfer learning
could be used ant he network trained on our data. After having performed initial tests
during the start-up phase of the project, it was decided not to investigate this direction
further as the data set available to us is rather small. On top of that our data is unlabeled,
leaving us with no data to train a neural network.
Another popular approach for point cloud analysis is clustering. Clustering is an unsuper-
vised machine learning method that has been used since before the presence of computers.
Clustering algorithms can offer a way of segmenting the cars into different clusters rep-
resenting components. Using this the hood could potentially be extracted, which would
allow more focus on comparing separate parts of the car and greatly reduce the size of
the point clouds to be compared.
An interesting candidate for this purpose is the density-based spatial clustering of ap-
plications with noise (DBSCAN) algorithm [11]. One of the most interesting features of
DBSCAN is that the number of clusters does not have to be provided. The algorithm
determines how many clusters it forms. The hypothesis was that different components of
the car are made of different materials, such that clustering on spatial information and
material properties would lead to segmentation of different components. Not all variables
could be included in the clustering algorithm as the data suffers from the curse of dimen-
sionality causing all points to be far separated from one another [4]. This would result in
either many different clusters, or one big cluster of all points.
Dimensionality reduction to improve the performance of the clustering has been investi-
gated. Initially, feature selection has been tried but resulted in either hundreds of clusters,

4 APPLIED METHODS 9

or one big cluster. Next, the derivatives of some of the variables for each point were ap-
proximated using a simple form of finite differences. However, this engineered feature
again did not give the desired results. The failure of this method is likely because the
variables between components were not distant enough to allow for clear segmentation of
these components.

3.3 Point cloud surface reconstruction

Alpha shape is defined as a surface mesh which covers the boundary of the point cloud
in 3D space. The idea of the alpha shape is the following: given the finite point cloud
S, we choose any two points P1, P2 inside the point cloud and draw the circle with the
radius alpha. If the circle contains only P1 and P2, then P1 and P2 are recognized as
boundary points, as shown on 9.

Figure 9: Alpha shape

Using alpha shape, we could numerically calculate the surface area and volume of the
car. However, as a shape descriptor, alpha shape still has some drawbacks. Given a
point cloud, it has a tendency create a surface that moves in between the points into the
car. This adds unexpected inner surfaces to the surface calculation leading to inconsistent
surface areas and volume calculated. To overcome these problems, we attempt to ” ”close”
the point clouds on two planes where the problems were most prevalent. We project all
the points onto the minimum Z plane to create an artificial layer which we merge with
the point cloud. By adding such a layer, the bottom of the car is totally closed. Due to
time constraints, the alpha shape was dropped in this project. It is a promising method
to quantify the shape.

4 Applied Methods

After performing the previously described analysis and applying the preprocessing steps,
we developed an algorithm to detect the changes in the point clouds. The change detection
was split into two parts: high-level feature and low-level changes. We use high-level
features to find the most similar car available in our database. Using this most similar
car, we proceed with the low-level change detection. We are now able to assume similarity
between the cars. The low-level changes would compute the changes at a granular level,
between the closest car in the database and the provided car.

4 APPLIED METHODS 10

4.1 High level feature detection

Each of the provided point clouds contains geometric information in the form of X, Y , and
Z coordinates; this geometric information can be used to extract some broader information
about the data, like length, width, and height of the car. Further, the provided point cloud
contains information on the mass of points that can be used to compute the total mass
of the car. These features can be used to differentiate between different car models and
families, in a broader sense, in the provided data set.
In addition to the features for the whole car, like total length and total height, we can
also extract similar features for the hood and windshield using the segments of the car,
which is described in section 2.2. For the high level analysis, we consider only 10 features,
which are shown in Table A.2.
All the length, width, and height parameters were evaluated using a bounding box around
the point cloud. The algorithm used for constructing the bounding box is described in
section 4.1.1. Since some of these features are correlated to each other, we drop one of
the two correlated features, a detailed study of this is provided in section 4.1.2. After the
feature analysis, we do the prediction step where we find the closest matching point cloud
to the given new point cloud, the analysis of this is provided in section 4.1.3.

4.1.1 Bounding Box

To compute the dimensions of a point cloud, we compute the vertices of a minimum
volume bounding box around the point cloud. The basic version of the algorithm, which
does that has a O(n3) complexity [16], given the number of points in a point cloud and
three bounding box computations per point cloud, therefore it becomes expensive to use
this approach. So we employ the method described by Barequet G., et al. [3], where
we compute the convex hull for the point cloud. And for each face of this convex hull,
we construct a bounding box such that this face lies on one of the faces of the bounding
box. Doing so, results in a finite number of bounding boxes, and the one with minimum
volume is selected. Computing a convex hull has a complexity of O(n log n), and each
convex hull has a finite number of faces resulting in the overall complexity of O(n log n)
per bounding box.
Figure 10 shows two of the possible bounding boxes that can be computed based on the
described method. We formulate all such bounding boxes and choose the one with the
least volume. Using this bounding box, we calculate the total length, width, and height
of the car. After this, we split the car into two parts separating the front and the rear
parts of the car, using the method described in section 2.2. As shown in Figure 11, these
boxes were used compute the dimensions of the hood and windshield. Table A.2 describes
the meaning of each of these high level features.

4.1.2 Feature Analysis

After the computation of the high level features, we analyze these features to understand
the trend across several point clouds. We employ these extracted features for predicting
the closest car model, to a given point cloud, in the database. These features also describe
the relative geometric changes between the two point clouds, like change in total length
or hood length.

4 APPLIED METHODS 11

(a) Common surface: sides of the car. (b) Common surface: bottom of the car,
also the minimum volume bounding box.

Figure 10: Bounding Boxes having different common surface as with the convex hull
formed on the point cloud.

(a) Minimum volume bounding box for the
front section of the car.

(b) Minimum volume bounding box for the
rear section of the car.

Figure 11: Minimum volume bounding box formed on the split point cloud using the
method described in section 2.2.

Feature analysis becomes critical for this specific problem since our first data set results
in only 151 useful point clouds, each having 10 high level features. Therefore our train-
ing set is minimal for any machine learning classification algorithm. Further, as we are
constrained by the total number of point clouds available, we try to reduce the num-
ber of training features. Reducing the number of training features results in a better
generalization of our classification model, and avoids overfitting.
To achieve this goal, we start by training a base prediction model, using Random Forest
Classifier [9], to predict the car model based on all 10 features. We try to reduce the
number of features in the following three steps, and we train a prediction model after each
step using a new set of features and evaluate its performance. To evaluate the performance
of each model developed, we split our data in an 80:20 ratio for the train and test set.
The misclassification rate was computed using the test set. Further, the quality of the
model was evaluated using 5 fold cross-validation.

1. Feature Selection: In this step, we compute the Pearson correlation coefficient
(ρX,Y) [22] to understand the pairwise correlation between different high level fea-

4 APPLIED METHODS 12

tures. For any pair of features, (X, Y), having a high correlation coefficient,ρX,Y ,
we remove one of the X, Y from the training features. Figure 12 shows the Pear-
son correlation coefficient for all the features. We classify a pair of features to be
highly correlated, if the Pearson correlation coefficient, abs(ρX,Y) ≥ 0.9, Figure 1
shows the selected features based on this criteria. The prediction model was trained
using these features, and the results are shown in Table 2. We can observe that
the misclassification rate reduces after the feature selection step. Additionally, the
mean cross-validation score remains approximately the same. At the same time,
the standard deviation in the cross-validation score decreases, indicating a slight
improvement in the generalization of the model.

Figure 12: Pearson correlation coefficient matrix.

Table 1: Features selected after removing the highly correlated features.

Total Length Total Width
Hood Length Hood Width
Hood Height Windshield Width

Windshield Height Mass

2. Principal Component Analysis (PCA)[12]: In this step, we attempt to trans-
form our features along the direction, which has a maximum variance, i.e., transform
the feature to orient it along the eigenvectors. In doing so, we were able to reduce the
number of features further. Figure 13 shows the cumulative explained variance plot.
We can observe that 100% of data variance lies only in 6 dimensions, and hence we
select these 6 principal components for training the prediction model. Table 2 shows
the result of the application of PCA after the feature selection step. We observe
that the misclassification rate has slightly increased. However, the cross-validation
score of the model improves significantly with a smaller standard deviation value
suggesting an improvement in the model.

4 APPLIED METHODS 13

Figure 13: Cumulative Explained variance plot

3. Feature Sensitivity: In this step, we attempt to denoise the data by selecting
the most sensitive features concerning output. For the sensitivity study, we employ
ANOVA F-test [8], which for any feature checks relative variability across various
car models with respect to variability in each model. The ANOVA test helps in
determining which features are most informative in differentiating between the car
models. Figure 14a shows ANOVA F-test results on the principal components.
Based on the F-scores we select the optimum number of features (principal compo-
nents) that generalizes the model best. Figure 14b shows that 5 out of 6 principal
components generalize the predictive model best. Table 2 shows the results obtained
with the selection of 5 best principal components. We can observe an increase in
generalization, although the misclassification rate remains the same.

(a) Anova F test result for the principal
components.

(b) Cross validation score plot for k = 1..6
best features.

Figure 14: Feature Sensitivity study for denoising and best feature selection.

Table 2: Prediction model comparison for different cases described in section 4.1.2.

Base Model Feature Selection PCA Feature Sensitivity
Misclassification
Rate

0.05769 0.03846 0.05769 0.05769

Cross Valida-
tion Score

0.909 ± 0.062 0.908 ± 0.057 0.934 ± 0.043 0.942 ± 0.034

4 APPLIED METHODS 14

Based on this analysis and the results shown in Table 2 we observe that we obtain the
best generalization model when we apply all three steps, namely feature selection, PCA,
and feature sensitivity. Therefore we decide to use these as preprocessing steps in our Car
Matching algorithm when working with the Random Forest Model.

4.1.3 Car Matching

With the high level features and feature analysis in hand, we can employ several kinds
of classification algorithms to predict the closest car model to a given point cloud. Con-
sidering the small data size and only 10 high level features, we can use algorithms like
K-nearest neighbors (KNN) [2], which has O(n2) complexity. Due to the nature of the
high level feature and problem, KNN with slight modification turns out to be a very robust
algorithm for this case. Nevertheless, we would like to develop a model that is suitable
even when the data size is large. Therefore, we define our prediction model to switch from
modified KNN to Random Forest Classifier [9] when the data size is sufficiently large.
The modified KNN algorithm employs two steps for finding the best matching point cloud

1. Find K closest neighbors based on the higher-level features.

2. Return the point cloud, which has a minimum sum for the difference in the number
of points and distance in feature space.

We employ this two-step method because we intend to find the closest car based on the
physical features only. The second stage ensures that if there is more than one car that
is similar in physical features, we choose the car, which is closest in terms of the physical
feature as well as the number of points.
A similar approach was taken with the Random Forest Classifier. In the first step, we
predict the closest car model. Then we search for the point cloud belonging to the
predicted car model, which has a minimum difference in the number of points.
After finding the closest car from the database, the high level changes are registered, and
the user can step forward to find low level changes which are described in section 4.2.

4.2 Low level changes detection

On this level we can assume similarity between cars. The following methods are aimed at
finding the differences at finer level between two car models and might fail when the two
cars differ greatly from one another. For the comparison the windshield is discarded, the
process of discarding the windshield is described in 2.2. In this section, the source point
cloud is used to describe the point cloud of a newly designed car to be compared to an
already known car: called the target.

4.2.1 Slicing and slice correspondence

Each point cloud consists of many points. To detect changes at a finer lever, we want
to reduce the dimensions of the point clouds being compared. We do this by cutting
the point cloud in slices. These slices are made in the X-direction, which corresponds to
the dimension of the length of the car. We slice in the direction of the windshield from
the front of the car model. We do not expect a component to have moved drastically,

4 APPLIED METHODS 15

such that we can assume that the slices have a similar internal structure. We can do this
as by the similarity assumption, the basic structure of all car models is the same. Now
small changes, like a change of material or thickness of a component, can be detected.
An example of the points belonging to one slice can be seen in Figure 15a. To prevent
ending up with only a few points occupying the final slice a threshold was set up: in the
last slice, if less than one-third of the slice width is populated with points, these points
are pushed back into the previous slice. This is done to prevent comparing slices, where
similarity can no longer be assumed. These parameters have been chosen after empirical
tests.

(a) An example of a slice, colored in red,
of a point cloud.

(b) Demonstration of splitting using the
quadtree method.

Figure 15: Two techniques used for dimensionality reduction.

The idea of slicing, as described above, works well as long as we have a target point cloud
in the database, which has approximately the same total length as the source point cloud.
However, a source point cloud which, for example, is an elongated car, could occur. In
that case, there is no car in the database with similar length. We would like to construct
a correspondence set using source slices and target slices, having the same slicing width,
such that each member of the set is a pair of source and target slice. Further, each of
these pairs has a similar geometric structure. In order to achieve this, we develop a slice
correspondence algorithm, which is described in Algorithm A.1.

4.2.2 Dense variable comparison method

To compare dense variables, each point in the source is matched to the closest point in
the target point cloud, its nearest neighbor in the target point cloud. To find the nearest
neighbor, the Euclidean distance is used in two dimensions - Y, and Z - all points are
projected to the slicing axis: the x plane. The dense variables generally describe material
properties, thus matching points to their nearest neighbor makes intuitive sense. A similar
internal structure of car and of the slice under study is assumed. By this assumption, each
point will get a matched point of the same component in the target. Now, the material
properties of each component can be compared.

4 APPLIED METHODS 16

A k-dimensional tree (k-d tree) is a data structure for efficiently querying a set of data
points for a nearest neighbor, in Euclidean space, originally described in [5]. The k-d
tree is a binary tree that represents a hierarchical subdivision of space. It works well for
small k, especially compared to the number of points. If k approaches the magnitude of
number of points in the data set, the data structure no longer leads to a better querying
performance.
For our data set we are considering the Cartesian geometry of the points, with the x
dimension projected to a plane, and hence only have k = 2 dimensions, with sample
point clouds summing up to an order of 105 points. This makes the k-d tree applicable
to perform fast nearest neighbour queries.
A rule needs to be prescribed for this subdivision of space: the splitting rule. In this
project the sliding midpoint rule was used [14]. The construction of the k-d tree is
performed in O(kn log n), where k is the number of dimensions of the data and n the
number of data points. Generally, the k-d tree is generated with a number of points
at each leaf, and once that leaf is chosen as one of the candidate nearest neighbor, the
final nearest neighbor is found using brute force. This is done to facilitate finding the p
nearest points but this is not a requirement in this project, only one nearest neighbor is
of interest. Therefore, a tree with one point at each leaf was used. Querying a k-d tree
for a nearest neighbor can be done, on average, in O(log n).
After having constructed the k-d tree using the target, we iterate over the source points
and find a nearest neighbor for each point. This way the values of the variables can
simply be subtracted, giving us a delta. The pseudocode of this procedure can be found
in Algorithm A.3. In the ideal case, the number of points in both point clouds is equal
and every point in the source has one corresponding point in the target.
In practise however, doubly matched points occur which can be caused by various reasons.
It could be that the data generation of the point cloud is different in both samples leading
to relative over- or under-sampling. Another contributor is when a geometric change has
taken place between the source and target. In the areas where geometry has changed, an
unusual matching of points could result.

4.2.3 Sparse variable comparison method

In the provided data set, the sparse features represent contact artifacts. These are discrete,
integer values, which are non-zero only in a few small regions of a point cloud. Since these
features contain zero value for most of the points, the first step towards the analysis is
summing the value from all the points, for each variable, and comparing these in two
point clouds. This gives a broad perspective of the change in these features. In this low
level feature change analysis, we take yet another step in this direction and try to localize
the changes in finer regions of the point cloud. Doing so helps us in pinpointing these
changes to a small region, which can help an engineer working with these point clouds for
their analysis.
To localize these changes, we extend the idea of summing these variables for the entire
car to a small region in the car. We start this investigation at a slice level, where we split
the slice in quarters and sum these variables for each quarter. If we detect any change
for any quarter, then we further split that region recursively, until the maximum depth
is reached. This method is commonly referred to as the quadtree approach [21]. For a

4 APPLIED METHODS 17

given point cloud, at this maximum depth level, for every sparse feature, we compute the
sum of values for all the points present in that segment of the quadtree and compute the
difference of values from the corresponding segment in the other point cloud. These values
correspond to the local level changes. The algorithm used to execute the idea mentioned
above is described in Algorithm A.3.
While the idea of not forming the quadtree recursively in the regions, where no change has
been detected, saves the computational effort by avoiding redundant calculations, it might
lead to problems when these values are shifted inside a quarter. Figure 16 shows one such
example, as the quadtree would not be able to detect these changes at a coarser level, it
would not perform any recursive split in this region. This limitation can be tackled to an
extent, by modifying the Algorithm A.3 and introducing a thresholding parameter which
enforces the recursive split until the thresholding depth.

(a) Slice from target point cloud. (b) Slice from source point cloud.

Figure 16: Red points represent a non-zero value for a sparse variable in the slice. The
blue points represent the zero values. The left image shows the target location of non-zero
sparse values and right shows the source location of the non-zero sparse values.

The changes in the sum of sparse values can happen because of two reasons, first being the
changes in the value of already existing points in both the point clouds (Type I change),
the second being addition, removal, or both of new points in one or both of the point
clouds (Type II change). The two changes require different treatments. The first kind
can be handled by computing the difference in the sum of a sparse variable and assigning
them to all the points having non-zero value for the corresponding variable. The second
kind of change is dealt with by adding the missing points in the source point cloud with
change values assigned to them and setting all other parameters to 0, which makes a clear
indication that these missing points were added when looking at dense variables. Further,
to aid in a localized study of the changes, we define a δpoint parameter for each sparse
variable. The δpoint is the change in the number of points in a slice having non-zero value
for the corresponding variable. These two kinds of changes are shown and discussed in
section 5.
Similar to dense variable change detection, all the changes detected in the sparse variable
were concatenated to the source point cloud.

5 RESULTS 18

4.2.4 Geometric comparison

To detect a change in the geometry, the Hausdorff distance between two point clouds is
used. Given two sets of point A and B, the Hausdorff distance is defined by:

DH(A,B) = max
a∈A

min
b∈B

∥∥a− b∥∥ (5)

The Hausdorff distance is a directed distance metric, the general symmetric variant is
simply defined by max(DH(source, target), DH(target, source)). For computing the di-
rected Hausdorff distance an implementation of the SciPy Python package [23] is used,
based on [20].
Next, a similar approach as for the sparse variables is used. In the quadtree approach,
another split is performed, if the Hausdorff distance is larger than a threshold, or the
maximum depth is reached. The Hausdorff distance found on the maximum depth of
the quadtree is assigned to all points in this split. If the quadtree traversal is prema-
turely stopped, because the distance found is smaller than the threshold, all points in
the split get a zero Hausdorff distance. The pseudocode of this procedure can be found
in Algorithm A.4. The dimension in which the hood has been sliced, is assumed to be
constant for all points and thus not considered when calculating the Hausdorff distance.
In the result, a high Hausdorff distance indicates geometric change, and a zero Hausdorff
distance indicates no geometric change.

5 Results

Based on our analysis and developed algorithms for detecting high and low level changes,
we developed a pipeline combining all intermediate steps to produce the final result. The
pipeline incorporates all the preprocessing steps, high level feature extraction, closest car
matching, and low level change detection.

5.1 Pipeline

The final product is a Python class that takes a point cloud and names of sparse and
dense variable as an initialization parameter. It also provides the option to modify other
default parameters which are used for the change detection algorithm. The user can call
apply method with the location of the new car and gets an output file with all the changes
written to it. Figure 17 shows the execution order of the algorithms described in section
4.

5.2 Car Matching

The car matching recommendation algorithm finds the best match from the database.
Therefore, it can only be used after running the ”fit” method in the pipeline. The fit
method generates a compiled database of high-level features for all the existing point
clouds. For a point cloud having about 3x105 points, the higher-level feature detection
takes about 40 seconds per point cloud, and the overall time required for finding the
closest car is about 50 seconds.

5 RESULTS 19

Figure 17: Diagram of the Pipeline.

To test the car matching algorithm, we make the following three test cases:

1. Data set 1 with one point cloud removed for testing.

2. Data set 2 with one point cloud removed for testing.

3. Data set 1 + data set 2 with one point cloud removed for testing.

For each test case, the ”fit” method was called after the appropriate setup, and the
database was updated. For test case 1, we make a total of 15 runs with a random
selection of removed point cloud, for case 2 we make 9 runs with all the point clouds
being removed once, for case 3 we make 15 runs with a random selection of removed point
cloud.
In each case, the detected closest car belongs to the same car family and has the same
car model as the test car. Further, it always finds the car model, which has about the
same number of points in the point cloud. Hence the behavior of the algorithm is as per
the expectation.

5.3 Low level changes detection

The dense, and sparse low level feature detection algorithm was run on the second data
set with all variables: var 0, var 1, var 2, var 3 and var 6 tol X. Var 0, ar 1, and var 2
correspond to the material properties. Var 3 and all var tol X correspond to contact
artifacts. The analysis takes approximately 15 minutes per car pair to complete. In this
section, the scale of colouring has been changed to clarify the area of detection. A gray
coloring is used when no significant change was found. Red and blue are used when there
is a positive or negative change respectively. Validation of the low level change detection
results was performed with the second data set provided.
The second data set was provided such to validate the model’s results. All labels for the
second data set were presented in Table A.4. The changes can be divided into three areas
of change: the front hood outer skin, the front hood inner skin, and the front hood inner
reinforcement. The results should show a change in the entire outer hood, inner hood

5 RESULTS 20

or in the front of the hood respectively. In some cars the variables representing contact
artifacts had been changed. This should be detected on a low level indicating where the
contact artifacts have been added or removed.
For the cars with a material change, as expected no geometric change was found. The
maximum Hausdorff distance found is of, negligible, order of 10−2 millimeter throughout
the whole car. When inspecting the dense variable change for all dense variables we
observe that the area associated with the respective change is highlighted. The detected
change value is homogeneous, as expected when the material is changed. An example of
this can be seen in 18b where the front hood inner skin’s material was changed between
car 1 and 6. The inner skin generally has a special structure to absorb an impact. This
structure is clearly visible.

(a) Var 1. (b) Hausdorff distance.

Figure 18: Change of car 6 with respect to reference.

For the cars where the thickness of a component was changed, a geometric change in
the correct areas was detected. Additionally, a dense variable change was also detected
throughout the affected area. This result was not expected, further analysis showed this
is likely due to the method used by BMW to extract the point cloud from the Finite
Elements simulation. Both the dense variable and geometric changes detected can be
seen in Figure 19.
When both the thickness and the material were changed, the algorithm again showed
results that coincide with the expectation. A geometric and variable change is clearly
identified at the correct location in the car. This can be seen in Figure 20, where the
front hood inner reinforcement’s material and thickness was changed. Consequently, we
see a geometric and dense variable change at this location.
A great advantage of the current approach is the ability to detect both large and small
changes. For example, between car 1 and 3 the material of the front hood outer skin was
changed from steel to aluminum. A drastic change with respect to the material properties,
so a large delta is expected for the dense variables. Indeed, as can be seen in histogram
21a, where the average value of the variable is depicted by the red vertical line, we see
a relatively large delta. On the other hand, for small changes like between car 1 and 6
where only the type of steel used was changed. The algorithm identifies this change and
depicts it as relatively small compared to the mean value of the material property as can
be seen in figure 21b. The histogram does not depict all deltas on exactly one point equal

5 RESULTS 21

(a) Var 2. (b) Hausdorff distance.

Figure 19: Change of car 4 with respect to reference.

(a) Var 2. (b) Hausdorff distance.

Figure 20: Change of car 2 with respect to reference.

to the change in the material property between the two materials. This is again caused
by the data generation method, the change we see corresponds to the expected change.
We do see some outliers in the histogram. These outliers are caused by a match between
points of different components. In different components, materials with different proper-
ties are desired. The mismatched points have a large delta value. The mismatch happens
on the interface of a changed component. More points are mismatched when the geometry
changes between cars.
Looking at the distribution of the points with non-zero distance between matched points,
we get an idea of the quality of the matching. For car 6, plotted in figure 22b, no geometric
change is expected. The results shown in the diagram agree with what this expectation,
as a distance of 0.02 millimeter can be neglected. For car 4, plotted in figure 22a larger
values are found. This corresponds to the label that the thickness of a component has been
changed. The distribution suggests that the thickness change is of order 100 millimeter.
The validation case recommends observation of low-level changes in contact artifacts for
the cars 3, 4, 6, and 7. These changes were recommended in level and location, indicating
addition or removal of points or change in the value of sparse variable for the existing
points. Due to the very nature of these features, any changes in them do not cause
a significant change in geometry. Mostly these sparse variable changes are confined to

5 RESULTS 22

−40000 −20000 0 20000
delta

0

200

400

600

800

1000
po

in
t c

ou
nt

non-zero delta var_2 distribution

(a) Between car 1 and 3.

0 5000 10000 15000 20000 25000
delta

0

200

400

600

800

1000

1200

1400

1600

po
in
t c

ou
nt

non-zero delta var_2 distribution

(b) Between car 1 and 6.

Figure 21: Distribution of non-zero deltas found, red vertical line indicates the mean value
of variable.

0 5 10 15 20
distance [mm]

0

100

200

300

400

500

600

700

800

co
un

t

non-zero matching distance distribution

(a) car 4.

0.00 0.02 0.04 0.06 0.08
distance [mm]

0

50

100

150

200

250

co
un

t

non-zero matching distance distribution

(b) car 6.

Figure 22: Non-zero distance between matched points distribution.

several small regions in the point cloud.
Firstly, we consider the case where new sparse points were added to car 4. In this case, the
changes detected through the low-level feature detection algorithm correspond to these
added points in the car 4. The location of changes, as well as the magnitude of the
change in that region, were also detected. Figure 23a show the detected changes for this
car. Looking at Table A.1, we observe that for var 3, we detect only a Type II change
with a negative amplitude, which corresponds to the addition of new points. Hence we
can compute precisely the change with its magnitude and number of points added in case
of Type II change.
The second case is detecting the case where the values of sparse variables have been
changed. For this we consider the case of car 6 which has an asymmetric displacement
in the value of the sparse variable near the windshield of the car, we observe that these
changes were well detected, as can be seen in Figure 23b. Further, a look at the Table A.1
shows that these changes span over one slice since some of them are classified as Change
Type II.
The categorization of changes in two categories helps us better define the changes on a
local level without losing the global insight on the changes. Since these categorizations are
done based on the local δpoint, and we can see that the global δpoint is 0, which implies
that these changes involved displacement across the slices. There is also the possibility
to extend these categorizations to accommodate wider possibilities, which can further
enhance the overview of local changes.
The third case to consider is the mixture of the two cases described above, i.e., changing
the value of sparse variables as well as adding/removing them from the point cloud. If

6 CONCLUSIONS 23

this occurs, we consider the variable var 3 of the car 3, which has both the changes, i.e.,
the values of the existing point were changed as well as some points were removed. Table
A.1 shows that the Change Type I, as well as Change Type II, have a positive value
indicating removal of the points and reduction in the amplitude of existing points.

(a) Car 4: Change Type II in
var 3.

(b) Car 6: change in
var 6 tol 1.

(c) Car 7: Change in
var 6 tol 5.

Figure 23: Detected Changes in the Sparse variables during the low level feature detection
for Different Cars.

During the lower level feature detection analysis for the sparse variables, we observe
that for some of the cars, which have no change label for the sparse variables in the list
1, sparse variable changes were detected. Such changes were observed only for the cars
having geometric changes. Since these changes were not intentional, they were not present
in the provided list. However, it can be seen that these changes are caused due to the
movement of contact artifacts to accommodate geometric changes. Figure 23c shows the
changes in the sparse variable induced by geometric changes.
Table A.1 displays a concise list of detected changes for all the point cloud in the data
set two. The cars having no sparse variable changes were eliminated from the list.

6 Conclusions

In this project, we have developed an algorithm to detect the changes between two car
models, which are presented in a human readable manner. The algorithm automates one
of the components in the iterative design process that relied heavily on human expertise
and experience. The comparison between cars can now be performed by AI that relies on
data instead of expertise. The developed algorithm will improve as more data is being
fed into it, making it more useful with time.
The algorithm exhibits the desired behavior. It detects both small and local changes,
as well as big and global changes. These change detections are not only limited to the
geometric changes but also non-geometric changes. The unexpected results that were
found can be explained by the data generation. These are the limitations of the model
that a user should be aware of.
This project has been validated on finding changes to a single component. In real use
cases, more than one component can be changed. This can be solved by applying some
density based clustering algorithm on the results, allowing the algorithm to analyze the
changes separately. This is a promising direction for future research.

6 CONCLUSIONS 24

Additionally, the algorithm could prove to be the stepping stone for applying AI on a
larger scale. The results of the comparison could be combined with the results of the
FEM simulations to make a prediction on how a change of a component might impact
the HIC value. This could open the way to eventual AI real-time recommendations to
engineers. Potentially saving time for engineers doing monotonous tasks, and lives on the
road.

Bibliography

[1] 2013. url: https://www.euroncap.com/en/vehicle-safety/the-ratings-
explained/vulnerable-road-user-vru-protection/head-impact/.

[2] N. S. Altman. “An Introduction to Kernel and Nearest-Neighbor Nonparametric
Regression”. In: The American Statistician 46.3 (1992), pp. 175–185. doi: 10.1080/
00031305.1992.10475879. eprint: https://www.tandfonline.com/doi/pdf/10.
1080/00031305.1992.10475879. url: https://www.tandfonline.com/doi/abs/
10.1080/00031305.1992.10475879.

[3] Gill Barequet and Sariel Har-Peled. “Efficiently Approximating the Minimum-
Volume Bounding Box of a Point Set in Three Dimensions”. In: Journal of Al-
gorithms 38 (Jan. 2001), pp. 91–109. doi: 10.1006/jagm.2000.1127.

[4] Richard Bellman. Dynamic Programming. Princeton University Press, Oct. 1957.
isbn: 069107951X. url: https://www.xarg.org/ref/a/069107951X/.

[5] JL Bentley. “Multidimensional Binary Search Trees Used for Associative Searching”.
In: Communica-tions of ACM 18.9 (1975), pp. 509–517. doi: 10.1145/361002.
361007.

[6] P. J. Besl and N. D. McKay. “A method for registration of 3-D shapes”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (Feb. 1992),
pp. 239–256. issn: 1939-3539. doi: 10.1109/34.121791.

[7] Murray Bourne. Head Injury Criterion (HIC) pt 2: HIC Index, example. Jan. 2020.
url: https://www.intmath.com/applications-integration/hic-part2.php.

[8] G. E. P. BOX. “NON-NORMALITY AND TESTS ON VARIANCES”. In:
Biometrika 40.3-4 (1953), pp. 318–335. doi: 10.1093/biomet/40.3-4.318. url:
https://doi.org/10.1093/biomet/40.3-4.318.

[9] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32.
issn: 1573-0565. doi: 10.1023/A:1010933404324. url: https://doi.org/10.
1023/A:1010933404324.

[10] Angel X. Chang et al. ShapeNet: An Information-Rich 3D Model Repository. Dec.
2015. arXiv: 1512.03012 [cs.GR].

[11] Martin Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise”. In: AAAI Press, 1996, pp. 226–231.

[12] Harold Hotelling. “Relations Between Two Sets of Variates”. In: Biometrika 28.3/4
(1936), pp. 321–377. issn: 00063444. url: http : / / www . jstor . org / stable /

2333955.

[13] Jing Huang, Zhiying Liu, and Yongcheng Long. “A Numerical Investigation of a
Novel Hood Design for PedestrianProtection”. In: The open mechanical Engineering
Journal 8 (2014), pp. 872–878. doi: 10.2174/1874155x01408010872.

[14] S. Maneewongvatana and Dave Mount. “It’s okay to be skinny, if your friends are
fat”. In: Center for Geometric Computing 4th Annual Workshop on Computational
Geometry (1999).

25

https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/head-impact/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/head-impact/
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://doi.org/10.1006/jagm.2000.1127
https://www.xarg.org/ref/a/069107951X/
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/34.121791
https://www.intmath.com/applications-integration/hic-part2.php
https://doi.org/10.1093/biomet/40.3-4.318
https://doi.org/10.1093/biomet/40.3-4.318
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1512.03012
http://www.jstor.org/stable/2333955
http://www.jstor.org/stable/2333955
https://doi.org/10.2174/1874155x01408010872

[15] Andriy Myronenko and Xubo Song. “Point-Set Registration: Coherent Point Drift”.
In: arXiv e-prints (May 2009). arXiv: 0905.2635 [cs.CV].

[16] Joseph O’Rourke. “Finding minimal enclosing boxes”. In: International Journal of
Computer & Information Sciences 14.3 (1985), pp. 183–199. issn: 1573-7640. doi:
10.1007/BF00991005. url: https://doi.org/10.1007/BF00991005.

[17] Pedestrian testing protocol. Nov. 2011. url: https://cdn.euroncap.com/media/
1463/euro-ncap-pedestrian-protocol-version-531.pdf.

[18] Charles R. Qi et al. “PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space”. In: arXiv e-prints (June 2017). arXiv: 1706.02413 [cs.CV].

[19] Charles R. Qi et al. “PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation”. In: arXiv e-prints (Dec. 2016). arXiv: 1612.00593 [cs.CV].

[20] Abdel Aziz Taha and Allan Hanbury. “An Efficient Algorithm for Calculating the
Exact Hausdorff Distance”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 37.11 (Nov. 2015), pp. 2153–2163. doi: 10.1109/tpami.2015.
2408351. url: https://doi.org/10.1109/tpami.2015.2408351.

[21] Yafu Tian et al. “A fast incremental map segmentation algorithm based on spectral
clustering and quadtree”. In: Advances in Mechanical Engineering 10 (Feb. 2018),
p. 168781401876129. doi: 10.1177/1687814018761296.

[22] “VII. Note on regression and inheritance in the case of two parents”. In: Proceedings
of the Royal Society of London 58.347-352 (Dec. 1895), pp. 240–242. doi: 10.1098/
rspl.1895.0041. url: https://doi.org/10.1098/rspl.1895.0041.

[23] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods (2020). doi: https://doi.org/10.1038/s41592-
019-0686-2.

[24] Yang Yang, Sim Heng Ong, and Kelvin Weng Chiong Foong. “A robust global and
local mixture distance based non-rigid point set registration”. In: Pattern Recogni-
tion 48.1 (2015), pp. 156–173.

[25] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern Library for
3D Data Processing”. In: arXiv:1801.09847 (2018).

26

http://arxiv.org/abs/0905.2635
https://doi.org/10.1007/BF00991005
https://doi.org/10.1007/BF00991005
https://cdn.euroncap.com/media/1463/euro-ncap-pedestrian-protocol-version-531.pdf
https://cdn.euroncap.com/media/1463/euro-ncap-pedestrian-protocol-version-531.pdf
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1612.00593
https://doi.org/10.1109/tpami.2015.2408351
https://doi.org/10.1109/tpami.2015.2408351
https://doi.org/10.1109/tpami.2015.2408351
https://doi.org/10.1177/1687814018761296
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2

A Appendix

−400 −200 0 200 400 600 800 1000
x

−10

0

10

20

30

40

d^
2
z_
m
ax
/d
x^

2

car A_a_4
car A_b_5
car B_a_1
car B_a_8
car A_d_2
car A_c_9

Figure A.1: Second derivative, found using finite differences, of the line plotted in figure
8a.

27

Data: Source Point Cloud, Target Point Cloud, Slicing Width
Result: {(Source Slice, Target Slice)}

1 Compute the number of source and target slices.;
2 source start ← sourcemin;
3 source end ← sourcemax;
4 target start ← targetmin;
5 target end ← targetmax;
6 while target start ≤ target end do
7 Make target slice;
8 best fitness ← 0;
9 while source start ≤ local search space do

10 Make source slice;
11 compute fitness;
12 if new fitness ≥ best fitness then
13 best slice ← source slice;
14 best start ← end of best slice;

15 else
16 continue;
17 end

18 end
19 add (best slice, target slice) to correspondence set;
20 set source start to best start;

21 end
Algorithm A.1: Slice Correspondence Algorithm

Data: Slice correspondence set
Result: Mapping of form (points, delta)

1 delta mapping ← [];
2 while slice correspondence set is not empty do
3 source slice, target slice ← pop(slice correspondence set);
4 tree ← build kdtree(target slice);
5 while source slice point set is not empty do
6 source points ← pop(source slice point set);
7 dist, nearest target point ← tree.query(source point);
8 delta ← nearest target point.variables - source point.variables ;
9 delta mapping ← (point, delta);

10 end

11 end
Algorithm A.2: Dense variable change detection Algorithm

28

Data: Slice correspondence set, maximum depth
Result: list of detected changes

1 list of changes ← [];
2 while slice correspondence set is not empty do
3 source slice, target slice ← pop(slice correspondence set);
4 stack ← make quadtree(source slice, target slice);
5 while stack is not empty do
6 source split, target split, depth = pop(stack);
7 source sum ← compute sum of all points for each feature for source split;
8 target sum ← compute sum of all points for each feature for target split;
9 if source sum 6= target sum for any sparse feature then

10 if depth == maximum depth then
11 add changes to list of changes;
12 else
13 new split ← make quadtree(source split, target split);
14 stack.push(new split);

15 end

16 else
17 continue;
18 end

19 end

20 end
Algorithm A.3: Sparse variable change detection Algorithm

29

Data: Slice correspondence set, maximum depth
Result: Mapping of form (points, distance)

1 delta mapping ← [];
2 while slice correspondence set is not empty do
3 source slice, target slice ← pop(slice correspondence set);
4 stack ← make quadtree(source slice, target slice);
5 while stack is not empty do
6 source split, target split, depth = pop(stack);
7 distance ← compute hausdorff distance(source split, target split);
8 if distance < threshold or depth >= maximum depth then
9 if distance < threshold then

10 distance ← 0;
11 end
12 delta mapping ← (points in source split, distance);

13 else
14 new split ← make quadtree(source split, target split);
15 stack.push(new split);

16 end
17 continue;

18 end

19 end
Algorithm A.4: Geometric change detection Algorithm

30

(a) Car 3 - var 1. (b) Car 5 - var 1.

(c) Car 7 - var 1. (d) Car 8 - var 2.

(e) Car 9 - var 1. (f) Car 10 - var 1.

Figure A.2: Low level change between cars of second data set and reference, all dense
variables show similar results.

31

Table A.1: Detected changes for Sparse values for data set 2. A positive value for change
correspond to removal of points or reduction in value, and a negative change correspond
to addition of new point or increase in values. The classification of type of changes is
provided in section 4.2.3

Car Changes
2 Variable name Change Type I Change Type II overall change δpoint

var 6 tol 1 0.0 25920.0 25920.0 1083.0
var 6 tol 3 0.0 12960.0 12960.0 1083.0
var 6 tol 5 0.0 71280.0 71280.0 1083.0
var 6 tol 10 0.0 12960.0 12960.0 1083.0

3 Variable name Change Type I Change Type II overall change δpoint
var 3 276.0 540.0 816.0 10.0
var 6 tol 1 -56.0 84.0 28.0 70.0
var 6 tol 3 -28.0 42.0 14.0 70.0
var 6 tol 5 -163.0 242.0 79.0 70.0
var 6 tol 10 -28.0 42.0 14.0 70.0

4 Variable name Change Type I Change Type II overall change δpoint
var 3 0.0 -161.0 -161.0 140.0
var 6 tol 1 -212.0 256.0 44.0 39.0
var 6 tol 3 -106.0 128.0 22.0 39.0
var 6 tol 5 -593.0 720.0 127.0 39.0
var 6 tol 10 -106.0 128.0 22.0 39.0

5 Variable name Change Type I Change Type II overall change δpoint
var 6 tol 1 -24.0 40.0 16.0 54.0
var 6 tol 3 -12.0 20.0 8.0 54.0
var 6 tol 5 -72.0 117.0 45.0 54.0
var 6 tol 10 -12.0 20.0 8.0 54.0

6 Variable name Change Type I Change Type II overall change δpoint
var 6 tol 1 24.0 -8.0 16.0 74.0
var 6 tol 3 12.0 -4.0 8.0 74.0
var 6 tol 5 69.0 -24.0 45.0 74.0
var 6 tol 10 12.0 -4.0 8.0 74.0

7 Variable name Change Type I Change Type II overall change δpoint
var 6 tol 2 0.0 -7925.0 -7925.0 -3483.0
var 6 tol 7 0.0 -2111.0 -2111.0 -1016.0
var 6 tol 15 0.0 -873444.0 -873444.0 -136188.0

8 Variable name Change Type I Change Type II overall change δpoint
var 6 tol 1 90.0 -46.0 44.0 61.0
var 6 tol 3 45.0 -23.0 22.0 61.0
var 6 tol 5 262.0 -135.0 127.0 61.0
var 6 tol 10 45.0 -23.0 22.0 61.0

32

Table A.2: The table explains each of the higher level feature used in this work. The
visual column shows an arrow in each image, which indicates the edge along which the
dimension was measured.

Feature Name Description Visual

Total Length Total length of the car

Total Width Total width of the car

Total Height Total height of the car

Hood Length Length of the front section
of car containing hood.

Hood Width Width of the front section
of car containing hood.

Hood Height Height of the front section
of car containing hood.

Windshield Length Length of the rear section
of car containing wind-
shield.

Windshield Width Width of the rear section
of car containing wind-
shield.

Windshield Height Height of the rear section
of car containing wind-
shield.

Total mass Total mass of the point
cloud.

33

Variables Dense feature Sparse feature
X, Y, Z ×

var 0 ×
var 1 ×
var 2 ×
var 3 ×
var 4 * ×
var 5 * ×
var 6 ** ×

Table A.3: Variable categorization. (*) indicates that the variable is only present in data
set 1. (**) indicates that the variable is only present in data set 2.

Car number Changes applied in comparison to car 1
2 Material and thickness of front hood inner reinforcement
3 Material of front hood outer skin; location/level of var 3
4 Thickness of front hood outer skin; addition of new items for var 3
5 Material and thickness of front hood outer skin
6 Material of front hood inner skin; location/level of var 6
7 Thickness of front hood inner skin: location/level of var 6
8 Material thickness of front hood inner skin
9 Material of front hood inner reinforcement
10 Thickness of front hood inner reinforcement

Table A.4: changes applied to reference car in data set 2

34

	Introduction
	Data
	Data Set
	Data Preprocessing

	State of the art
	Point cloud registration
	Point cloud segmentation
	Point cloud surface reconstruction

	Applied Methods
	High level feature detection
	Bounding Box
	Feature Analysis
	Car Matching

	Low level changes detection
	Slicing and slice correspondence
	Dense variable comparison method
	Sparse variable comparison method
	Geometric comparison

	Results
	Pipeline
	Car Matching
	Low level changes detection

	Conclusions
	Bibliography
	Appendix

