
TECHNICAL UNIVERSITY OF MUNICH

TUM Data Innovation Lab

Radar SLAM for Autonomous Driving

Authors Felix Bergmann, Frithjof Winkelmann, Hans Schmiedel,
Michael Seegerer

Mentor(s) Dr. Georg Kuschk
Astyx GmbH / Cruise

Co-Mentor M.Sc. Fabian Wagner
Project Lead Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier (Department of Mathematics)

Jul 2020

1

Abstract

Simultaneous Localization and Mapping (SLAM) is a problem from robotics concerned
with mapping the environment while simultaneously localizing the robot in the environ-
ment. It constructs a map of the environment that can be used for further action planning.
It has applications in many robotics problems, for example autonomous driving. Many
types of sensors can be used, for example cameras, lidar or radar sensors. While cameras
and lidar often perform poorly in bad weather environments, radar sensors produces good
measurements even in extreme weather conditions. This makes them a good alternative
to cameras and lidar.
Using radar sensors poses some challenges, since their output is usually more noisy and
contains fewer data points than lidar scanners.
In this project we explore different solutions to SLAM for radar data in the context of
autonomous driving.

CONTENTS 2

Contents

Abstract 1

1 Introduction 4
1.1 Motivation for the Project . 4
1.2 Goal of the project . 4
1.3 The SLAM Problem . 4

2 Datasets 6
2.1 Astyx/Cruise Dataset . 6
2.2 Kitti Dataset . 7

3 Related literature 8
3.1 Classical Approaches . 8
3.2 Deep learning based approaches . 9

3.2.1 Deep odometry on point clouds . 9
3.2.2 Deep learning approaches for loop closing 10

4 Methodology 12
4.1 Ground truth . 12
4.2 Classical approaches . 12

4.2.1 Radar Preprocessing . 13
4.2.2 Odometry . 17
4.2.3 Scan Matching . 17
4.2.4 Loop Closing: . 18

4.3 Deep learning based approaches . 20
4.3.1 Deep models for point cloud processing 21
4.3.2 Deep odometry on point clouds . 22
4.3.3 Training details . 23

5 Results 24
5.1 Classical approach . 24
5.2 Deep odometry . 26

5.2.1 Evaluation on Astyx data . 26

6 Conclusions 29

1 INTRODUCTION 3

1 Introduction

1.1 Motivation for the Project

Deploying autonomous drivings requires a proper knowledge of the environment and accu-
rate localization within this environment. The perception of the environment is normally
provided by highly accurate lidar and camera sensor systems. These systems can suffer
greatly from visibility impairments usually caused by bad weather conditions. Radar sen-
sors don’t suffer as much from these problems but generally have a lower resolution, are
more noisy, and usually feature only 2 geometrical dimensions.

Astyx GmbH/Cruise is working to solve this problem by building high resolution 3D geo-
metrical radar sensors which can capture many more data points per scan. For reference,
the only other public automotive radar dataset has around 100 points per scan [1], while
the Astyx GmbH/Cruise sensor delivers approximately 1000 points [2] and a typical lidar
sensor has about ≈ 100000.

This project investigates wether the radar sensors by Astyx GmbH/Cruise can be used
to improve SLAM systems.

1.2 Goal of the project

The goal of our project is to evaluate classical and deep learning based approaches for co-
registering multiple 3D radar point clouds and computing 6DoF relative poses between
them in the context of simultaneous localization and mapping (SLAM).
The main tasks carried out are the following:

• Literature research (sparse point cloud approaches vs camera-SLAM & Lidar-SLAM)

• Evaluate point cloud based classical algorithms on radar point clouds

• Evaluate state-of-the-art neural network approaches on radar point clouds

• Comparison against public camera/Lidar approaches using the existing multi-sensor
setup

• Improvements via segmentation of static/dynamic objects

The project is carried out using a radar sensors developed by Astyx GmbH / Cruise.

1.3 The SLAM Problem

Simultaneous Localization and Mapping (SLAM) is a problem from robotics, which is
concerned with mapping the environment of a robot while simultaneously estimating its
state in the environment. Commonly the map is represented by the location of interesting
keypoints in the environment. The state, or pose, is usually described by the trajectory
of the robot, which is a sequence of locations, but can also include other things like for
example the speed.

1 INTRODUCTION 4

In a normal SLAM application, the sensor measurements come in as the robot operates.
Since the map and state of the robot are needed for further action planning, this means
that SLAM algorithms typically have to run in real time. Also note that the estimation
of states at an earlier time can and should be updated as new measurements come in.
This aspect is typically referred to as loop closing. It is typically necessary because the
robot accumulates error in its state estimates stemming from the measurement noise.
The tasks the system therefore needs to solve are:

• Estimation of the current state of the robot: Given the state of the robot at the
previous time step xk−1 and the measurement from the current time step zk, estimate
its new state xk

• Loop closing: Given all measurements and state estimates up to the current time
step, find loops and use those to minimize the accumulated error of all state esti-
mates.

These two steps are typically called the front end and back end of SLAM [3]:

• The front end takes the sensor data as input and is responsible for detecting and
extracting relevant features within this data. It also associates matching features
in consecutive scans. The front end typically outputs the new state xk. When the
state consists of the position the front end simply extracts the relative pose between
consecutive frames.

• The back end then takes all the information of the front end to deduce the robots
position and to update its interior map representation. It associates data between
the current measurement and much earlier scans.

This separation of SLAM systems is depicted in Figure 1.

Figure 1: Separation of front end and back end by [3].

2 DATASETS 5

2 Datasets

2.1 Astyx/Cruise Dataset

We use a dataset from Astyx/Cruise [2]. This data includes

• Point clouds from a radar sensor, where each point cloud contains about 1000 points

• Point clouds from a lidar sensor (Velodyne VLP-16)

• GPS data with an accuracy of 0.5m in position and 3.14◦ in orientation

• CAN bus data of the ego vehicle itself like the current yaw rate and the velocity.

This data was captured at a rate of 10Hz for two sequences of consecutive driving spanning
about 2000 and 4000 frames respectively.
The GPS trajectory of the sequences can be seen in Figure 2.

(a) Sequence A
(b) Sequence B

Figure 2: GPS Tracks from the two sequences in the Astyx dataset

Astyx GmbH/Cruise also has a public dataset called Astyx HiRes2019 Dataset. It only
contains 546 frames with the same frequency of 10 Hz but includes camera data for each
frame at 2048 × 618 resolution. The other sensors specifications are the same.

The radar sensors produce a cloud of 5D points consisting of [x, y, z, Vr,mag] at each
frame. Additionally to the 3D geometric position [x, y, z] of each point they yield a relative
radial velocity Vr ∈ [−5.2m/s, 5.2m/s] and a feedback magnitude mi ∈ R+. The feedback
magnitude corresponds to the reflection strength of the detected object. This depends
heavily on the material of the object and reflection angle. For example, metal usually
generates a much higher magnitude than human flesh. Velocity values v outside the range
[−5.2m/s, 5.2m/s] are mapped to the range using modulo: v′i = (vi + 5.2 mod 10.4)− 5.2
due to the doppler ambiguity. The radial velocity itself is determined by analyzing how
the detection’s motion has altered the frequency of the returned signal.

A visual comparison of example point clouds from the Astyx HiRes2019 Dataset’s lidar
and radar sensor can be seen in Figure 3 along with a camera picture for interpretation
of the scene. Here the lower resolution of the radar data can easily be observed, along
with the generally different shapes formed by the obtained detections. Particularly, in

2 DATASETS 6

the left lidar point cloud, the car coming from the other direction (see camera picture)
has a vague recognizable outline while in the right radar point cloud, the car is almost
indistinguishable from other detected shapes.

Image of the scene

40 20 0 20 40 0
20
406080100

0
5
10

Lidar point cloud

Y
40 20 0 20 40

x

0
20
40
60
80
100

201001020
Radar Point cloud

Figure 3: Comparison of the radar and lidar point cloud of the same scene. All axis scales
are in meters. The obtained detection points are plotted in red.

2.2 Kitti Dataset

Since the Astyx Dataset contains no accurate ground truth information on the vehicles
position and orientation, we also use the Kitti Odometry Dataset [4] in some of our
approaches.
This dataset consists of sensor information captured from a driving vehicle in a total of
21 sequences. The following sensors are available:

• Lidar Data from a Velodyne HDL-64E

• Stereo images from two front facing cameras

• Accurate location (accurate to 0.01m) and orientation (accurate to 0.03◦) from a
OXTS RT 3003 localization system

This data was also captured at 10Hz and thus is suitable for comparison to the Astyx
GmbH/Cruise dataset.

3 RELATED LITERATURE 7

3 Related literature

Here we give an overview of the literature on SLAM. We mostly focus on Radar SLAM
and give short references to visual and lidar SLAM methods.

3.1 Classical Approaches

Compared to lidar or camera based SLAM approaches, there are very few attempts at
solving the SLAM problem using radar sensors in a similar measurement setup as in our
datasets [2]. Furthermore, due to the sparse density, medium range and high amount of
noise of radar point clouds, landmark based approaches, where real-world static landmarks
are used as reference points for orientation, are not well suited for the radar datasets in
general. The most promising approach for our use case was the one described in [5].
Here, the authors also had a single front-facing radar sensor setup. They proposed a
graph-based SLAM variant using Iterative Closest Point (ICP) algorithms [6] to match
single consecutive radar scans together. Graph-based SLAM methods basically model the
problem as a graph. In simplified terms, nodes in the graph represent the positions of the
robot and the scan at that position, and the edges describe the translation and rotation
between the nodes.

Another similar radar based graph SLAM approach is proposed in [7], where the system
consists of three major parts: Pose Tracking, Local Mapping and Loop Closure. Pose
Tracking includes the extraction of features from the radar scans and the detection of
similarities between them to estimate the pose transformations. Local Mapping depicts
these transformations on a map and Loop Closure finds and eradicates loops. The au-
thors also tested their approach against the common Camera and LIDAR based methods
ORB-SLAM2, LOAM and SuMa for difficult weather conditions. Except for some minor
problems with snow, Radar SLAM was able to function in all weathers while cameras and
LIDAR sensors were seriously hindered by fog, rain and snow.
A problem we presumed to have with this approach was that feature extraction and scan
matching are applied on single scans. However, due to sparsity of our radar scans, this
wouldn’t give us satisfying results. Instead, we combine multiple scans to submaps be-
forehand. This idea stems from [5], as they had the same problem with sparse radar scans.

Contrary to graph SLAM, the occupancy grid map approach models its map as a grid/matrix
of small cells. Every cell contains the information of how likely it is that this cell is oc-
cupied. By assuming the position of the robot is known, each radar scan updates the
occupation values of corresponding cells. This technique is used for example in [8]: The
paper describes the use of a 360◦ microwave radar sensor to build occupancy grids for
every scan. Together with scan matching, which estimates the transformations between
scans/grids, odometer sensors and global map updating, this yields a high resolution
SLAM system called R-SLAM [8]. The approach looks promising, however, our Radar
point cloud only contains a 110◦ front faced view.

Prevalent problems, that SLAM systems have to face, are described in [3] as Robustness,
Scalability and Map representation. Robustness analyses how well the system performs

3 RELATED LITERATURE 8

if we consider algorithmic or hardware failures. Algorithmic failures, for example, can
be false detections of loops, incorrect data association because of outliers or poor sensor
data because of unpleasant environments. Hardware failures, on the other hand, are mal-
functioning or aged sensors which then adversely affect the overall sensor measurement.
Scalability describes the problem of worse performance and increasing memory due to
the growing map size. While indoor environments can easily be processed, outdoor usage
will probably need some kind of parallelization or sparcification. The latter describes
techniques to use fewer but more useful data points, which could then yield to unde-
tected loops. The aspect of map representation focuses on how to model the environment
such that we get an acceptable trade-off between performance, memory consumption and
accuracy.

3.2 Deep learning based approaches

Both the front end and back end part of SLAM can be solved with deep learning based
approaches. We will first focus on the front end - the odometry.

3.2.1 Deep odometry on point clouds

For the front end, a deep network typically models a function that maps from the previous
position and current observation to the current position. Since we can compute the new
position xk = Pk−1,k xk−1, in most cases the relative pose is estimated (here Pi,j refers
to the matrix representing the relative pose between frame i and frame j). In this case
the function h′(zk−1, zk) = Pk−1,k is modelled by some deep network, where zi is the
observation at frame i.
It is known that relative pose estimation from images is possible using convolutional
networks [9, 10, 11]. This is typically called deep visual odometry (DVO).
Since we are working on radar point clouds, we will focus on architectures that can
work with raw point clouds. Given the formulation of the front end of SLAM as a pose
estimation problem, we can try to estimate the pose between two point clouds. This is
also known as point cloud registration, where a relative pose from a source point cloud S
to a target point cloud T is sought. There are two common ways of solving this problem:

• Approaches based on Iterative Closest Points (ICP): In the classical ICP algorithm,
each point is assigned the corresponding closest point in the target point cloud.
Then the distance between those points is minimized (further explained in Section
4.2.3).
Instead of using the minimal distance, one can use a deep network to find point
correspondences. This can be done either by generating the correspondences by the
network itself, or have the network map points to a feature space and then finding
correspondences by minimizing the distance in feature space.

• Direct methods: These methods directly predict the relative pose of two point clouds
using a deep network.

We will now quickly summarize the most important papers for both ICP based approaches
and direct methods.

3 RELATED LITERATURE 9

ICP based approaches:
The paper on Fast Convolutional Geometric Features (FCGF) [12] and 3DMatch [13]
propose deep networks based on 3D convolutions that compute features for each point in
a point cloud. They then show that these features can be used to register point clouds.
D3Feat [14] proposes a deep network that simultaneously detects keypoints in point clouds
and computes useful features for keypoint matching.

Direct methods:
PointNetLK [15] uses a reformulation of the Lucas-Kanade algorithm [16] and PointNet
[17] to compute the pose between two point clouds. PCRNet and iPCRNet [18] are
extensions of this work that replace the pose improvement step of Lucas-Kanade with
another deep network. Deep Closest Point [19] is an extension of the classical Closest
Point algorithm, which replaces the normal closest point approximation by a transformer
architecture [20]. This produces a ”soft” point correspondence which is used to compute
the transformation between point clouds.

Direct methods are usually easier to implement and more efficient in training and infer-
ence. Thus we will focus on these in our experiments.
There are also approaches that can be seen as a hybrid between deep visual odometry and
odometry on point clouds [11, 21, 22, 23]. They map the point cloud to a 2D panoramic
image and then use a convolutional network to estimate the pose. Since these approaches
only work for dense point clouds, we will not explore them any furhter in this project.
Worth mentioning are also approaches based on scene flow [24, 25]. They extend the
definition of scene flow to 3D point clouds. For each point in the source point cloud they
try to estimate a translation (called flow) so that the point clouds match. These methods
have the advantage that they allow filtering out moving objects and thus can estimate
the transformation between the point clouds in a more stable manner.

3.2.2 Deep learning approaches for loop closing

Altough some of the deep odometry approaches employ recurrent networks to model
temporal dependencies in the measurement sequences and thus view the problem as a
sequence to sequence modeling problem, they can not be viewed as SLAM. This comes
from the fact that they only estimate a pose for each frame once, while in a real SLAM
systems, the estimates for previous states might be refined when new observations come
in and a loop is detected.
There are two deep learning based approaches for loop closing:

• Use a deep network to detect loop closures. This can either happen by computing
features for each frame and then detecting loop closures in the feature space or by
directly estimating the probability of a loop closure between two frames.

• End to end based approaches: Here SLAM is viewed as a sequence to sequence
learning problem. A deep network takes in the sequence of observations Z and esti-
mates a sequence of states X. When a new observation is added to the observation
sequence, the network receives the whole sequence again to estimate a new sequence
of states.

3 RELATED LITERATURE 10

In [26], the Scan Context image [27] is used as the input to a convolutional network to
compute the place index - a unique identifier of a grid cell in the map. They show that
this apporach can reliably detect loop closures after being trained on training data from
a single day.
In [28], the authors propose to model SLAM as a sequence to sequence learning problem.
They consider images generated from a video game engine and first use a convolutional
network to estimate relative poses between frames. They then use a Transformer based
architecture to model the graph optimization that happens in classical SLAM algorithms.
They call this approach Neural Graph Optimization. They show that this neural graph
optimization is indeed able to improve the estimated poses coming from a visual odometry.
Due to time constraints and the lack of ground truth loop closures we could not evaluate
deep learning approaches on loop closing for radar data.

4 METHODOLOGY 11

4 Methodology

In the following we will outline our approach to the problem. We will first describe how we
obtained ground truth information for Astyx/Cruise data, and will then explain classical
and deep learning based approaches for radar SLAM.

4.1 Ground truth

While we have some ground truth information of the position and orientation of the
vehicle at each frame from the GPS, we suspect that this is not accurate enough for usage
as frame to frame ground truth information. Thus we need to extract ground truth pose
information from the data in some other way. We use the available lidar data to try to
extract ground truth poses using Lidar SLAM algorithms, as they are usually very exact
and have existing implementations. We evaluate the following approaches

• Surfel-based Mapping (SuMa) [29]: Uses Iteratively Closest Points (ICP) to get
frame-to frame pose estimation (odometry) and then uses a surfel map for efficient
loop closing.

• LOAM: Lidar Odometry and Mapping in Real-time [30]: Extracts feature points at
edges from Lidar scans and uses those feature points for odometry and loop closing.

These approaches are well tested on the KITTI dataset [4] and return good results. Un-
fortunately, we find that on the Astyx data they fail, either during point cloud registration
or during loop closing. We suspect that this is due to missing frames in the data: When
information is captured from different sensors, one has to make sure that the measure-
ments roughly happen at the same time. When this is not the case, for example when
sensors are not synchronized properly or one sensor is not working properly, the frame
of this measurement has to be dropped. This happens in both sequences from the Astyx
data, as can be seen in Figure 4. We suspect that this is the reason why the Lidar SLAM
algorithms are not working properly. We where thus only able to obtain ground truth
pose estimate for sequence B for the first 2278 frames, since after that a loop closing error
occurs, rendering the poses unusable.
Due to the missing frames we solely rely on the GPS data for estimating the relative poses
between consecutive scans. Estimated relatives poses based on the CAN bus data suffer
from enormous drift and are thus not usable.

4.2 Classical approaches

As mentioned in chapter 3, the experiments in [5] had a similar measurement setup
and a well defined graph-based SLAM approach. The system structure of this approach
also served as an inspiration for the algorithm structure for our classical approach. Our
structure is illustrated in Figure 5.

4 METHODOLOGY 12

(a) Sequence A (b) Sequence B

Figure 4: Difference of the timestamp of the current frame to the last frame for both
sequences. At 10Hz, this should have a value of 0.1s (indicated by the red line) when no
frames are dropped.

Figure 5: System architecture of our classical SLAM approach. Design inspired by [5].

4.2.1 Radar Preprocessing

The Radar sensor measurements are provided as a 5D point cloud dataset with 3D pose
information, the relative radial velocity Vr of the detection point, and the feedback mag-
nitude of detection.

STATIC TARGETS FILTERING:

For pose estimation we are interested only in static points. Therefore we try to discard
any kind of moving points from the point cloud. This is made by possible by the Doppler
shift phenomenon in waves, which for radar makes relative radial velocity measurable for
each detection. To classify the radar point into stationary and non-stationary we used the

4 METHODOLOGY 13

approach discussed by Kellner et. all [31]. Here random sample consensus, or RANSAC,
[32] is used which can generally eliminates outliers and clutter from data.

The main idea in this context is that static points all have a calculable theoretical radial
velocity based on their position to the car which can be compared to the measured radial
velocity. Moving objects would then have a greatly different measured radial velocity
than the one they would have if they were static.

To obtain this theoretical radial velocity, a curve is fitted to a random batch of the data
usually containing both static and moving targets. Since most points are static, the fitted
curve gives the relation between positions and radial velocity for static objects. However,
it is slightly inaccurate due to the few moving points also being considered in the curve
fitting. The algorithm then checks how many of the points in the whole frame are a good
fit to this curve to evaluate its accuracy. This whole process is done iteratively until the
curve with the most inliers is found.

The fitting is done using scikit-learn’s [33] polynomial fitting with degree parameter 2
for a parabola and taking the point’s direction of arrival (see Figure 6) as input. The
minimization carried out is described in Equation (1).

min
a,b,c∈R

a · θ2 + b · θ + c− Vr

with θ : Direction of arrival [rad], Vr : Radial velocity [m/s]
(1)

Points that fit this curve are all static targets while the others are considered outliers -
the moving targets. This is illustrated in Figure 7, where the same scene as in Figure 3
was used.

Figure 6: Illustration showing the angle of arrival θ of a detected object and its radial
velocity Vr relative to the ego vehicle (here in red)

4 METHODOLOGY 14

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Direction of Arrival [rad]

2

0

2

4

6

8

10

12
Re

la
tiv

e
Ra

di
al

 V
el

oc
ity

 [m
/s

]

RANSAC with DoA and radial velocity

fitting curve
inlier points
outlier points

Figure 7: Application of RANSAC for filtering static targets by fitting a polynom. The
relative velocity of the single radar points (yellow & red) are obtained with the Doppler
effect. The resulting fitting curve for static targets is represented by green curve. The
yellow points represent the desired static points of the point cloud.

Note that if most points are not static as is assumed here, this process would do the
opposite task and keep only the moving targets. This described problematic can lead to
poor results, especially in a relatively empty scene with mostly other moving vehicles with
almost the same linear velocity, such as it occurs in slow moving traffic multi-lane scenario.

Alternatively to RANSAC, the static points could also be filtered by MLESAC [34] or
PROSAC [35]. The difference to the normal RANSAC is that in MLESAC the quality
of the sampled consensus set gets evaluated by its likelihood. Thus, MLESAC is less
sensitive to a sub optimal noise threshold parameter. In PROSAC the sampling process
of the consensus set is guided by a priory information of the input parameter, for example
using the ego vehicle velocity to estimate a radial velocity Vr for static parameters, which
will be likely to produce an inlier point.

SUBMAPS:

To circumvent the sparsity of radar scans, submaps are generated from multiple scans.
To do so the scans belonging to one submap must be converted to common cartesian
coordinates with the GPS information. Using the combined GPS location and orienta-
tion, called pose, successive scans can be merged together by applying the translation and
rotation from Equation (4).

4 METHODOLOGY 15

Figure 8: Creation process of the submaps. Radius outlier filtering is done here with a
radius of 2 meters and demanding at least 10 neighbors. All axes are in meters.

OTHER FILTERS:

Before generating the submaps, we apply a radius based outlier filter on individual scans
which removes points with no neighbor in an 1m radius as clutter. This quickly removes
points that won’t need to be considered in the numerically more complex filter described
next.
After generating the submaps, an extra filter is used to remove points with less than a
certain amount of neighbour points within a certain radius. This helps remove a large
portion of noisy points which hurt the performance of the next steps like loop closing.

(a) Submap without neighbouring filtering (b) Submap with neighbouring filtering

Figure 9: Result of the additionally applied filters. The neighbour filtering is applied here
with 2m radius and with 30 required neighbours in it. All axes are in meters.

4 METHODOLOGY 16

4.2.2 Odometry

In theory, consecutive scans could also be merged together in common cartesian coor-
dinates using odometry data of the vehicle instead of GPS. However, frame drops add
unrecoverable drift when using just odometry, ruining the accuracy of future locations
even if the frames work accurately. GPS information is therefore much more suitable as
frame drops only lose the position of the particular dropped frames and not all future
ones which will stay just as accurate.

4.2.3 Scan Matching

To improve the accuracy of the relative transformation between two consecutive Radar
frames, a scan-matching method based on 3D point-to-point ICP algorithm [6] is used.
From the GPS information, we are able to obtain a heading and localization of the two
successive scans. As an initial guess for the transformation matrix described in Equation
3, the difference between the two GPS locations and headings is used. The heading
difference θ leads to a rotation matrix R with Equation 2.

R(θ) =

cos θ − sin θ 0
sin θ cosθ 0

0 0 1

 (2)

T =

cos θ − sin θ 0 tx
sin θ cos θ 0 ty

0 0 1 tz
0 0 0 1

 , or short T =

[
R t
0 1

]
(3)

The main idea behind the iterative closest point (ICP) algorithm [6] is to minimize the
squared Euclidean distance between the closest point pairs in a scan and its estimate
based on the previous scan.
Using the initial transformation matrix, the first scan is translated and rotated according
to Equation (4), giving an estimate of the obtained successor scan. Point pairs are selected
by choosing all points with its nearest neighbour lying within a threshold distance. The
distance between pairs must then be minimized with Equation (5) to obtain an improved
transformation matrix.

P
′

estimatedSuccessor = {p′
1,, p

′
n}

with p
′
i = RkPi + tk, and Rk =

[
cos θk − sin θk
sin θk cos θk

]
(4)

The above described process is repeated until it reaches convergence. In [6] it was shown
that if all points pi belong to the 3D model M , ICP will converge monotonically to the
nearest local minimum. In our case the model M represents all static objects of the scene.

tk+1, θk+1 = arg min
tk,θ

∑
(i,j)

‖Rk(θ)pi + t− qj‖2 (5)

4 METHODOLOGY 17

While experimenting with ICP, we discovered that the z-component of the geometric
point cloud is too noisy for scan matching. Therefore, we decide to not solely rely on
geometric information. As an additional feature the reflection magnitude of the radar
detection points is used. The principle of not solely relying on geometric information for
matching during ICP is evaluated more closely in [36]. Here, the authors use the color
intensity value of laser scans as a third dimension for the matching process.
Due the sparse point cloud density of single radar scans, the scan matching of consecutive
scans does not lead to an improvement of the transformation. Hence, we are applying the
same scan matching principles on a submap level to improve the alignment of successive
submaps. Therefore, we are assuming here that the drift inside a submap of N scans is
small enough to be negligible. Here, N is a design parameter, which has to be chosen
based on measurement frequency.
For the implementation of ICP we use the Open3D library [37].

4.2.4 Loop Closing:

The classical loop closing approaches we considered are both based on evaluating the
similarity of two submaps in a way that is not invariant to the observer’s point of view.
This means, for example, that two submaps which are received while driving at the same
location, but in opposite directions, should be able to be recognized as very similar, which
isn’t obvious when considering just the submap point clouds. Matching the current with
all previous submaps in a brute-force method quickly becomes computationally infeasible
as the number of submaps increases. We therefore need to compute signatures for the
submaps from their point clouds, such that we can find similar ones with an efficient
nearest neighbour search for signatures.

The considered signature generation approaches are Geometric Landmark Relations (GLARE)
[38] and Geometrical Surface Relation(GSR) [39] :
GLARE: For GLARE, feature points li from the submap are extracted with AKAZE
[40] and the Euclidean distance ρi,j are computed, as well as the angle θi,j between every
two different features li and lj. This can be seen in the two graphs on the left hand side
of Figure 10.
These value pairs are then plotted together in a 2D histogram bin. Furthermore, a
multivariate gaussian centered around these value pairs is added to allow for uncertainties
in relative distance and bearing estimates (uncertainties originating from the sensors in
this case). The resulting histogram serves as a scan signature and can be compared to
other GLARE signatures via the L1-norm.
To further illustrate the function of the multivariate gaussian: if its variance parameter is
set to 0, submaps would need the exact same relative feature positions to be considered
similar. If the variance is set way too high, all submaps would obtain similar signatures
and it wouldn’t be possible to distinguish submaps containing the same scene.

4 METHODOLOGY 18

Figure 10: Generation of GLARE: Each landmark relation, given by its orientation θi,j
and distance ρi,j , is incorporated as a multivariate Gaussian. The scan signature S is
obtained by summing over all histograms Hi,j. The Figure is taken from [39].

GSR: At first GSR projects the point clouds onto a 2D grid and computes mean µi and
covariance matrix

∑
i using the points of every non-empty cell li (see Figure 11).

Figure 11: Part of a submap with cellsize 10. Exemplary computed means µi of four cells
in blue and Euclidean distance of two cells in magenta

4 METHODOLOGY 19

Similar to GLARE, the algorithm then calculates the Euclidean distances pi,j and the
angles θi,j of any two cells. But instead of computing the angles with the point coordi-
nates, like in GLARE, GSR uses the orientation θi of a cell, which is estimated with the
eigenvector emin with the smallest eigenvalue of the covariance matrix:

θi = arctan2(eymin, e
x
min) (6)

π will be added to θi if the eigenvector emin points away from the sensor’s origin. This is
determined by:

θi = θi + π if arctan2(µyi , µ
x
i) + π − θi > τmax (7)

τmax in this equation is a threshold that is set to π/3, according to [39]. After thtat, the
bearings are computed by substracting the two orientations:

θi,j = θi − θj (8)

In the end, the value pairs of distance and bearing are also assigned to histogram bins,
where the histograms, analogously to GLARE, are used as GFS signatures.

Both our approaches are based on generating one of the previously described signatures
for each submap (GLARE or GSR). Using a nearest neighbour search the closest submaps
are considered as loops candidates. Successive submaps tend to have similar signatures
and are therefore ignored. Loops candidates whose euclidean distance fall under a certain
treshold are then seen as a detected loop. Calcuating the transformation matrix between
the two submaps of the detected loop makes it possible to correct the drift accumulated
over the journey between them.
It is important to note that detecting false loops introduces a heavy distortion to the
total map and localization of the vehicle as it connects two points of the trajectory to-
gether which don’t actually belong together. Therefore it is generally a good idea to stay
conservative in the acceptance of loop closing candidates.

4.3 Deep learning based approaches

In addition to evaluating classical radar SLAM approaches, we also evaluate different deep
learning based approaches for the front end part of SLAM.
We will first discuss different deep learning models for processing point clouds and then
show how we applied them to the front end part of radar SLAM.
In Section 3.2.1 we briefly introduced some papers that work on deep odometry on lidar
point clouds [21, 11, 22, 23]. They map these point clouds onto a cylindrical projection
and then use convolutional neural networks to predict relative poses. This approach is
only possible for dense point clouds - such as those coming from lidar sensors, as otherwise
the images resulting from the projections would be very sparse. Thus we instead focus
on deep models that work directly on point clouds.

4 METHODOLOGY 20

4.3.1 Deep models for point cloud processing

One of the most challenging aspects of point clouds is that they are unordered sets of
3D points. Therefore normal models for sequential processing don’t necessarily work
very well. Some works propose to voxelize the point cloud - meaning discretizing the 3D
space into discrete voxels and then assigning points to their respective voxels. Then 3D
convolutions are used to process these voxelized point clouds. Approaches based on voxels
typically suffer from either low resolution due to big voxel sizes or high computational
cost for the 3D convolutions.
PointNet [17] instead uses the raw point clouds. Given a a set of points X = {xi ∈ R3}
it computes a feature for the point cloud by

PN({x1, .., xn}) = g({f(x1), .., f(xn)}) (9)

where f : R3 → RD maps each point to a high dimensional feature vector and g :
P (RD) → RD is a symmetric accumulation function. In practice, f is implemented by
a simple Multi Layer Perceptron (MLP) and g is simply the maximum over the single
dimensions: g(F)j = maxf∈F fj. This feature can then be used to predict desired outputs,
for example by using another MLP.

Figure 12: Simplified architecture of PointNet for computing a point cloud feature

Taking inspiration from convolutional neural networks in image processing, one can also
try to define convolutions on point clouds. Convolutions typically work on a neighborhood
around the interest point. To make this possible, one first has to define the neighborhood
for a point cloud. This can be done by a k-nearest neighbor approach or by including all
points in a certain radius. This gives edges euv between points xu, xv. For each of those
edges a feature vector fuv ∈ RD is computed by an MLP g, typically receiving the position
and, if available, feature vectors of the nodes: fuv = g(xu, xv, fu, fv). Then the feature
fu ∈ RD of each node xu is aggregated from the respective connecting edges, typically via
max-pooling: (fu)j = max(u,v)∈E(fu,v)j
If a k-nearest neighbor graph is used, this yields the dynamic edge convolution from
Dynamic Graph Convolutional neural networks [41], while using a radius graph yields the
set convolution layer from FlowNet3D [24].
A sequence of these convolutions are typically applied after each other. Between convo-
lutions one can choose to sub sample the point cloud (eg. by farthest point sampling or
random sampling) to reduce the computational cost. To get a global feature for the whole
point cloud, global max pooling over all points can be performed in the end.

4 METHODOLOGY 21

Figure 13: Point cloud convolution based on the neighborhood graph. First features for
all edges are computed using an MLP, then those features are accumulated in the nodes
with max pooling.

4.3.2 Deep odometry on point clouds

Inspired from the direct approaches (see Section 3.2.1), we estimate the pose between two
point clouds X, Y , by using a deep model (PointNet, DGCNN or FlowNet3D) that maps
the point clouds X, Y to their respective feature vectors FX , FY . We then concatenate
those feature vectors and use a MLP to predict the relative pose.

Figure 14: General network architecture to predict poses of consecutive point clouds.

While a pose can be represented by a matrix P =

{(
R t
0 1

)
|R ∈ SO(3), t ∈ R3

}
acting

on points in homogeneous coordinates, where R is the rotation matrix and t a translation
vector, this representation is not suitable as direct output for a deep network. The rotation
matrix has to satisfy det(R) = 1 and RRT = I in order to be a proper rotation matrix,
which is not guaranteed if it is being predicted by a neural network.
If a 3D pose is predicted, one instead has to resort to other representations of the rotation.
Suitable choices are either unit quaternions or the rodrigues vector w, which defines a rota-
tion around the axis w with angle ||w||. These representations are somewhat problematic,
since they have singularities that have to be dealt with properly.
If one instead knows that all poses only rotate around the z axis and translate around
the x and y axis, instead a 2D pose can be predicted. This can easily be represented by
a translation vector t ∈ R2 and angle θ without any singularities.
We use the deep network to predict a 2D relative pose and then use a L2 loss for training.
We find that normalizing the ground truth 2D pose across each of its dimensions indi-

4 METHODOLOGY 22

vidually greatly improves performance. We suspect that in the unnormalized case the L2
loss leads to different weights due to the scales of translation (typically ∈ [−0.1m, 0.1m])
and rotation (typically ∈ [−0.06◦, 0.06◦]).

For the feature computation we evaluate different models, namely Pointnet, DGCNN and
Flownet3D. The last two are based on graph convolutions.
Since we could only recover ground truth pose information sequence B of the astyx training
data, we resort to the KITTI odometry dataset [4] to train the models and test their
generalization capability. We sample 1000 random points from the lidar point clouds
to simulate the sparcity of radar point clouds and extract the relative pose between
consecutive frames as ground truth. In Section 5.2.1 we demonstrate, that our selected
model can also learn to recover poses from radar point clouds.
To evaluate the models we compute the 25-th, 50-th and 75-th percentile of the trans-
lational error and absolute rotational error of the predicted relative poses, which does
not evaluate the total drift of the predictions, but only the local difference to the ground
truth.
Traditional SLAM algorithms often improve their performance by registering the current
point cloud not only to the point cloud of the previous frame, but to a sub map from the
N previous frames, which is simply built from the previous pose estimates. We observe
that doing this slightly improves performance for deep odometry as well.
In some related approaches, the estimated pose is refined with a few iterations of Iterative
Closest Points. We observe that this improves our pose estimates quite a bit as well.

4.3.3 Training details

We use the unmodified architechtures of PointNet [17], DGCNN [41] and FlowNet3D [24]
for feature computation. The resulting features f1, f2 of two consecutive point clouds
512-dimensional feature vectors and are concatenated to yield a 1024-dimensional feature
vector. This is processed by an MLP with hidden layer sizes 1024, 512, 256 and an output
size of 3. We use the ReLU nonlinearities [42] followed by Batch Normalization [43] in
all layers except the output layer of the feature networks and the final MLP. We use the
Adam optimizer [44] with the default learning rate α = 10−3 and halve this learning rate
after every epoch. All models are trained for a total of 5 epochs. The PointNet based
model is trained with a batch size of 64, while DGCNN and FlowNet3D are trained with
a batch size of 8 due to their increased memory requirements.

5 RESULTS 23

5 Results

5.1 Classical approach

Due to the lack of exact ground truth data in the Astyx datasets, the classical approaches
implemented around their setup could not be evaluated quantitatively. However, by
plotting the resulting trajectories and point clouds qualitative assessments could be carried
out.
The static/dynamic segmentation with RANSAC shows good filtering results in most
frames. The evaluation of the performance can only be done qualitatively however there
is no ground truth with points labeled moving or static. With the help of the camera
data of the Astyx hires dataset it is possible to manually assess if moving objects are
successfully filtered out. One example is shown in Figure 15 where both moving cars in
front of the ego vehicle generate points originally but are filtered. Note that camera’s
view is much narrower and only shows a few meters to the sides while the radar shows
points more than 40 meters away

Image of the scene

40 20 0 20 40
Y

0

20

40

60

80

100

x

Original

40 20 0 20 40
Y

0

20

40

60

80

100

x

RANSAC Filtered

Figure 15: Result of static detections filtering process, described more detailed in 4.2.1.
Point cloud is illustrated in 2D due to the high clutter of the z−component which would
decrease the visibility. Both axes are in meters.

While the obtained maps generated with ICP and GPS information generally look decent,
street intersections where the vehicle quickly changes direction stay problematic. This is
partly due to the static/dynamic segmentation keeping stationary cars in the middle of
the road (which is common in street intersections) but also due to the GPS’ heading

5 RESULTS 24

information being less accurate in a 90 degree turn where the orientation changes rapidly.
This phenomena can be observed in subfigure 16b.

(a) Compilation of all scans (b) Zoomed version on a intersection scene

Figure 16: Obtained map zoomed on a intersection (which was visited twice by the vehicle)
highlighting the rotations being off when quickly turning by 90 degrees and points in the
middle in the road due to stationary cars. Frame drops are also visible here. All axes are
in meters.

Loops in the Astyx dataset can successfully be detected using GLARE and GSR signatures
of submaps. However, the low number of loop examples in the data makes it difficult to
obtain a meaningful quantitative performance measure. In the example 17, the vehicle
drives through the same intersection twice which is recognized as a loop. The problems
described above in street crossings can also be seen here when zoomed in.

Figure 17: Example of detected loop in the Astyx dataset using the GLARE signature
approach. The total drive trajectory and their point clouds can be seen on the left while
the submaps containing the loop are shown in closer detail. Both submaps also have their
GLARE signature shown on the right.

5 RESULTS 25

5.2 Deep odometry

We first evaluate PointNet, DGCNN and FlowNet3D as feature models for the network
architecture from Figure 14. We train on sequences 00−07 of the Kitti Odometry dataset
and run evaluation on sequences 08− 10. The results for sequence 8 can be seen in Table
1. The results for sequences 9 and 10 are comparable and are not shown for space reasons.
From this two things can be seen:

1. The models successfully generalize to the evaluation data.

2. All models have similar accuracy. Since PointNet is faster and requires less memory
for inference and training, we continue all other experiments only with PointNet.

Table 1: Rotational and translational errors on sequence 8 of the KITTI odometry dataset

Model Rotation error (in ◦) Translational error (in m)
25% Median 75% 25% Median 75%

PointNet 0.1947 0.4008 0.7159 0.0791 0.1606 0.2733
DGCNN 0.1580 0.3718 0.7449 0.0775 0.1557 0.2684
FlowNet3D 0.1840 0.4033 0.7781 0.0758 0.1526 0.2652

Additionally, we evaluate the performance when using a submap from the previous 5
frames and when refining the poses with ICP. Since both DGCNN and FlowNet3D require
a lot of memory to run, we can not train and evaluate them on this task. The result can
be seen in Table 2. Both methods bring a slight increase in accuracy.

Table 2: Rotational and translational errors on sequence 8 of the KITTI odometry dataset
when trained with submaps

Model Rotation error (in ◦) Translational error (in m)
25% Median 75% 25% Median 75%

PointNet with submaps 0.1529 0.3394 0.6513 0.0694 0.1445 0.2563
PointNet with submaps & ICP 0.1284 0.3130 0.6365 0.0652 0.1263 0.2577

Using the relative poses from all consecutive frames, we can recover the trajectory that
is predicted by our deep odometry and compare it to the ground truth trajectory. It
should be noted that this trajectory is subject to drift - the accumulation of errors from
the relative poses. This visualization can be seen in Figure 18.

5.2.1 Evaluation on Astyx data

Finally we train PointNet on astyx sequence B. We compare the simple point cloud
registration and the registration of the submap of the previous 5 frames. As radar point
clouds also have two additional dimensions of information for each point - its relative
radial velocity and magnitude - we also compare the performance with this information
included (giving 5 features per point) versus not included (giving 3 features per point).

5 RESULTS 26

Figure 18: Trajectory predicted by the deep odometry compared to the ground truth
trajectory for sequences of the KITTI dataset. While the overall poses are similar, the
accumulation of errors leads to increasing absolute error over time.

Table 3: Rotational and translational errors on Astyx sequence B. p is the number of
previous frames in the submap, f the number of features per point.

Model p f Rotation error (in ◦) Translational error (in m)
25% Median 75% 25% Median 75%

PointNet 0 3 0.1295 0.2612 0.4539 0.0501 0.1049 0.1815
PointNet 0 5 0.1122 0.2296 0.3964 0.0379 0.0759 0.1332
PointNet 5 3 0.1428 0.3083 0.5480 0.0617 0.1255 0.2109
PointNet 5 5 0.1377 0.3008 0.5411 0.0504 0.1009 0.1697

The results can be seen in Table 3, and visualizations in Figure 19. The matching with
a submap of the previous 5 frames interestingly brings no advantage. We suspect, that
this is because the features of the points - especially the radial velocity - can not be
transformed to a sensible common frame in the submap.
We also refine the pose estimates with a few iterations of ICP. This increases accuracy,
as can be seen in Table 4 and Figure 19.

Table 4: Rotational and translational errors on the astyx sequence B when refining the
pose estimate with ICP

Model p f Rotation error (in ◦) Translational error (in m)
25% Median 75% 25% Median 75%

PointNet 0 5 0.0443 0.0919 0.1716 0.0208 0.0332 0.0493

The relative pose error is a lot lower than for the KITTI dataset. We suspect this has
two reasons:

• The relative radial velocities in the radar data encode the velocity of the vehicle.
This can be used by the network to improve the accuracy.

5 RESULTS 27

(a) Result without ICP refinement (b) Result with ICP refinement

Figure 19: Trajectory predicted by the deep odometry compared to the ground truth
trajectory for Astyx sequence B.

• The points in the radar point cloud are not randomly sampled like for the KITTI
dataset, but are selected as interesting features by the radar sensor. These features
are likely to persist between frame and can be easier matched than randomly selected
points.

We also noticed that using two separate feature networks, instead of sharing weights for
both point clouds (compare with Figure 14) improves the registration result as well. Since
we dont have separate testing data and could not confirm this on the KITTI data, we
suspect this simply allows the network to overfit more to the training data.

6 CONCLUSIONS 28

6 Conclusions

With our work we showed that optimizing the accuracy of 6DoF relative poses can be
achieved by applying classical approaches on 3D radar point clouds. Furthermore, seg-
mentation of static/dynamic objects was explored and plays a key factor in the success of
other classical algorithms. For classification of static targets we used RANSAC [32] with
the relative radial velocity Vr and the direction of arrival as input features.

We have also shown that deep learning based approaches can perform point cloud regis-
tration even when the point clouds are very sparse and no further information from a GPS
or IMU is available. The additional information in radar point clouds (radial velocity and
magnitude) can be used to improve the registration accuracy. For deep learning based
approaches we only focused on the front end part of SLAM. Other works have already
shown that deep learning can be used to achieve better pose estimates by viewing SLAM
as a sequence to sequence learning problem. This could be incorporated into our work
but would likely require more data for training and evaluation.

This project did also not consider combining different sensors to achieve better SLAM
results. In visual SLAM, preintegrated factors from an Inertial Measurement Unit have
been shown to improve the overall system accuracy [45] by reducing drift. Using Cameras
could possibly allow to segment even sparse point clouds, resulting in in higher stability
in environments with many moving objects - like traffic in cities.
Unfortunately, we could not apply a comparison of our result to a multi-sensor setup due
to lack of camera information in datasets.

References

[1] Holger Caesar et al. “nuScenes: A multimodal dataset for autonomous driving”. In:
arXiv preprint arXiv:1903.11027 (2019).

[2] M. Meyer and G. Kuschk. “Automotive Radar Dataset for Deep Learning Based
3D Object Detection”. In: 2019 16th European Radar Conference (EuRAD). 2019,
pp. 129–132.

[3] C. Cadena et al. “Past, Present, and Future of Simultaneous Localization and Map-
ping: Toward the Robust-Perception Age”. In: IEEE Transactions on Robotics 32.6
(2016), pp. 1309–1332.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2012.

[5] Martin Friedrich Holder, Sven Hellwig, and Hermann Winner. “Real-Time Pose
Graph SLAM based on Radar”. In: 2019 IEEE Intelligent Vehicles Symposium
(IV). See https://tuprints.ulb.tu-darmstadt.de/8756/ for video attachment. 2019,
pp. 1145–1151. url: http://tuprints.ulb.tu-darmstadt.de/9285/.

[6] P. J. Besl and N. D. McKay. “A method for registration of 3-D shapes”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 14.2 (1992), pp. 239–
256.

[7] Ziyang Hong, Yvan Petillot, and Sen Wang. RadarSLAM: Radar based Large-Scale
SLAM in All Weathers. 2020. arXiv: 2005.02198 [cs.RO].

[8] R. Rouveure, M. O. Monod, and P. Faure. “High resolution mapping of the environ-
ment with a ground-based radar imager”. In: 2009 International Radar Conference
”Surveillance for a Safer World” (RADAR 2009). 2009, pp. 1–6.

[9] Tuo Feng and Dongbing Gu. “SGANVO: Unsupervised Deep Visual Odometry
and Depth Estimation With Stacked Generative Adversarial Networks”. In: IEEE
Robotics and Automation Letters PP (June 2019), pp. 1–1. doi: 10.1109/LRA.
2019.2925555.

[10] S. Wang et al. “DeepVO: Towards end-to-end visual odometry with deep Recur-
rent Convolutional Neural Networks”. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). 2017, pp. 2043–2050.

[11] Ronald Clark et al. “VINet: Visual-Inertial Odometry as a Sequence-to-Sequence
Learning Problem”. In: AAAI. 2017.

[12] Christopher Choy, Jaesik Park, and Vladlen Koltun. “Fully Convolutional Geomet-
ric Features”. In: ICCV. 2019.

[13] Andy Zeng et al. “3DMatch: Learning Local Geometric Descriptors from RGB-D
Reconstructions”. In: CVPR. 2017.

[14] Xuyang Bai et al. “D3Feat: Joint Learning of Dense Detection and Description of
3D Local Features”. In: ArXiv abs/2003.03164 (2020).

29

http://tuprints.ulb.tu-darmstadt.de/9285/
http://arxiv.org/abs/2005.02198
http://dx.doi.org/10.1109/LRA.2019.2925555
http://dx.doi.org/10.1109/LRA.2019.2925555

[15] Yasuhiro Aoki et al. “PointNetLK: Robust and Efficient Point Cloud Registration
Using PointNet”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2019), pp. 7156–7165.

[16] Simon Baker and Iain Matthews. “Lucas-Kanade 20 Years On: A Unifying Frame-
work”. In: International Journal of Computer Vision 56.3 (2004), pp. 221 –255.

[17] R. Q. Charles et al. “PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017, pp. 77–85.

[18] Vinit Sarode et al. One Framework to Register Them All: PointNet Encoding for
Point Cloud Alignment. 2019. arXiv: 1912.05766 [cs.CV].

[19] Yue Wang and M. Justin Solomon. “Deep Closest Point: Learning Representations
for Point Cloud Registration”. In: International Conference on Computer Vision
(2019), pp. 3523–3532.

[20] Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. NIPSâFIXMETM17.
Long Beach, California, USA: Curran Associates Inc., 2017, 6000âFIXME“6010.
isbn: 9781510860964.

[21] Chris Xiaoxuan Lu et al. milliEgo: mmWave Aided Egomotion Estimation with Deep
Sensor Fusion. 2020. arXiv: 2006.02266 [cs.RO].

[22] Younggun Cho, Giseop Kim, and Ayoung Kim. “DeepLO: Geometry-Aware Deep
LiDAR Odometry”. In: CoRR abs/1902.10562 (2019). arXiv: 1902.10562. url:
http://arxiv.org/abs/1902.10562.

[23] Zhichao Li and Naiyan Wang. “DMLO: Deep Matching LiDAR Odometry”. In:
ArXiv abs/2004.03796 (2020).

[24] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. “FlowNet3D: Learning Scene
Flow in 3D Point Clouds”. In: CVPR (2019).

[25] Aseem Behl et al. “PointFlowNet: Learning Representations for Rigid Motion Esti-
mation from Point Clouds”. In: Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). June 2019.

[26] G. Kim, B. Park, and A. Kim. “1-Day Learning, 1-Year Localization: Long-Term
LiDAR Localization Using Scan Context Image”. In: IEEE Robotics and Automation
Letters 4.2 (2019), pp. 1948–1955.

[27] Giseop Kim and Ayoung Kim. “Scan Context: Egocentric Spatial Descriptor for
Place Recognition within 3D Point Cloud Map”. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. Madrid, 2018.

[28] Emilio Parisotto et al. “Global Pose Estimation with an Attention-Based Recur-
rent Network”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (2018), pp. 350–35009.

[29] Jens Behley and Cyrill Stachniss. “Efficient Surfel-Based SLAM using 3D Laser
Range Data in Urban Environments”. In: Proc. of Robotics: Science and Systems (RSS).
2018.

30

http://arxiv.org/abs/1912.05766
http://arxiv.org/abs/2006.02266
http://arxiv.org/abs/1902.10562
http://arxiv.org/abs/1902.10562

[30] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-time”.
In: July 2014. doi: 10.15607/RSS.2014.X.007.

[31] Dominik Kellner et al. “Instantaneous ego-motion estimation using Doppler radar”.
In: Oct. 2013, pp. 869–874. isbn: 978-1-4799-2914-6. doi: 10.1109/ITSC.2013.
6728341.

[32] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartogra-
phy”. In: Commun. ACM 24.6 (June 1981), 381âFIXME“395. issn: 0001-0782. doi:
10.1145/358669.358692. url: https://doi.org/10.1145/358669.358692.

[33] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Ma-
chine Learning Research 12 (2011), pp. 2825–2830.

[34] P. Torr and A. Zisserman. “Robust computation and parametrization of multiple
view relations”. In: Sixth International Conference on Computer Vision (IEEE Cat.
No.98CH36271). 1998, pp. 727–732.

[35] O. Chum and J. Matas. “Matching with PROSAC - progressive sample consen-
sus”. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. 2005, 220–226 vol. 1.

[36] S. Druon, M. J. Aldon, and A. Crosnier. “Color Constrained ICP for Registration of
Large Unstructured 3D Color Data Sets”. In: 2006 IEEE International Conference
on Information Acquisition. 2006, pp. 249–255. doi: 10.1109/ICIA.2006.306004.

[37] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern Library for
3D Data Processing”. In: arXiv:1801.09847 (2018).

[38] Marian Himstedt et al. “Large scale place recognition in 2D LIDAR scans using
Geometrical Landmark Relations”. In: Sept. 2014, pp. 5030–5035. doi: 10.1109/
IROS.2014.6943277.

[39] M. Himstedt and E. Maehle. “Geometry matters: Place recognition in 2D range
scans using Geometrical Surface Relations”. In: 2015 European Conference on Mo-
bile Robots (ECMR). 2015, pp. 1–6. doi: 10.1109/ECMR.2015.7324185.

[40] Pablo Fernandez Alcantarilla. “Fast Explicit Diffusion for Accelerated Features in
Nonlinear Scale Spaces”. In: Sept. 2013. doi: 10.5244/C.27.13.

[41] Yue Wang et al. “Dynamic Graph CNN for Learning on Point Clouds”. In: ACM
Trans. Graph. 38 (2019), 146:1–146:12.

[42] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU)”. In:
CoRR abs/1803.08375 (2018). arXiv: 1803 . 08375. url: http : / / arxiv . org /

abs/1803.08375.

[43] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd
International Conference on International Conference on Machine Learning - Vol-
ume 37. ICMLâFIXMETM15. Lille, France: JMLR.org, 2015, 448âFIXME“456.

[44] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: International Conference on Learning Representations (Dec. 2014).

31

http://dx.doi.org/10.15607/RSS.2014.X.007
http://dx.doi.org/10.1109/ITSC.2013.6728341
http://dx.doi.org/10.1109/ITSC.2013.6728341
http://dx.doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
http://dx.doi.org/10.1109/ICIA.2006.306004
http://dx.doi.org/10.1109/IROS.2014.6943277
http://dx.doi.org/10.1109/IROS.2014.6943277
http://dx.doi.org/10.1109/ECMR.2015.7324185
http://dx.doi.org/10.5244/C.27.13
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375

[45] Christian Forster et al. “On-Manifold Preintegration Theory for Fast and Accurate
Visual-Inertial Navigation”. In: CoRR abs/1512.02363 (2015). arXiv: 1512.02363.
url: http://arxiv.org/abs/1512.02363.

32

http://arxiv.org/abs/1512.02363
http://arxiv.org/abs/1512.02363

	Abstract
	Introduction
	Motivation for the Project
	Goal of the project
	The SLAM Problem

	Datasets
	Astyx/Cruise Dataset
	Kitti Dataset

	Related literature
	Classical Approaches
	Deep learning based approaches
	Deep odometry on point clouds
	Deep learning approaches for loop closing

	Methodology
	Ground truth
	Classical approaches
	Radar Preprocessing
	Odometry
	Scan Matching
	Loop Closing:

	Deep learning based approaches
	Deep models for point cloud processing
	Deep odometry on point clouds
	Training details

	Results
	Classical approach
	Deep odometry
	Evaluation on Astyx data

	Conclusions

