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Motivation

How do cars drive on their own?

e Perceive environment with sensors

e Recognize roads, obstacles, other road users, ...
e Follow path according to internal map

-> Need map and cars position (SLAM)

Why Radar SLAM?
e almost weather-independent

@Astyx GmbH / Cruise

Project’s goal: Evaluate different SLAM approaches to model the
environment out of sensor data
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What is SLAM

Simultaneous Localization and Mapping:

e Map a robot’s environment
e Locate itself inside this map

Sensors —

M. F. H
on Radar”. In: 2019 |IEEE Intelligent Vehicles Symposium (IV).
S ttps://tuprints.ulb.tu-darmstadt.de/8756/.
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What is SLAM

e Sequence of robot’s states (position and rotation)
e Estimate next state with previous states and
measurements
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What is SLAM

Typically divided into Front- and Back-end:

Sensor

data

back-end

front-end

IR

~

MAP
estimation

. J

SLAM
estimate

C. Cadena et al. “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the
Robust-Perception Age”. In: IEEE Transactions on Robotics 32.6 (2016)
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Front-end

Preprocess sensor data

Find important features in sensor scans (feature

extraction)

Compare scans (data association / scan matching)
Estimate new states of the robot
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C. Cadena et al. “Past, Present, and Future of Simultaneous Localization
and Mapping: Toward the Robust-Perception Age”. In: IEEE Transactions
on Robotics 32.6 (2016)




Back-end

e Construct the map

e Correct errors and optimize state transitions

e Fix detected loops

sensor
data
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C. Cadena et al. “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the
Robust-Perception Age”. In: IEEE Transactions on Robotics 32.6 (2016)
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Datasets

Local 3D sensor coordinate systems (COS)

Radar Lidar Camera

! T 4

Master coordinate system = Radar

@Astyx GmbH / Cruise
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Astyx GmbH/Cruise Sensors

Lidar Radar Sensor GPS & IMU

e Location (~0.5m accuracy)
e Orientation (~3° accuracy)
e Acceleration

@Astyx GmbH / Cruise

Captured at 10Hz
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TUT

Ground truth for Astyx GmbH/Cruise Datasets

~0.5m accuracy (from GPS ) is not accurate enough

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020

Existing Lidar SLAM implementations:
e Surfel-based Mapping (SuMa)
e Lidar Odometry and Mapping

For dataset B we were able to obtain
Ground Truth information for
approximately ~2000 scans (half of the
scans from the dataset).
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TUT

Ground truth for Astyx GmbH/Cruise Datasets

previous mentioned approaches.

e Problem: Measurement scan matching is
here mostly based on lterative Closest Point
(ICP) --> unstable for large time difference
between the single scans.

e Visualization of one mismatched in the ICP
process on the left.

e Lidar based Ground Truth creation fails with the

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020
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Ground truth for Astyx GmbH/Cruise Dataset

Time difference between measurements
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KITTI Odometry dataset

Lidar GPS

e Location (~0.01m accuracy)
e Orientation (~0.03° accuracy)
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Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2012.
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Classical methods

GPS Information:
[latitude, longitude,
heading]

Radar: 5D point cloud

J

_| Pose optimization with

ICP
a2
Preprocessing:
static/dynamic »1 Single scans matching:
segmentation and points submap generation
without neighbors filter
3 Loop Closing

sl Point Clouds

——lp Pose Information
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Classical methods

a N 4
Radar: 5D point cloud
[x, y, z, V_r, mag]

GPS Information:
[latitude, longitude,
heading]
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Classical methods

Radar: 5D point cloud

. J
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Preprocessing:

( GPS Information:
[latitude, longitude,
L heading] y

static/dynamic
segmentation and points
without neighbors filter
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s Point Clouds
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Single scans matching:
submap generation

_| Pose optimization with

ICP
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Classical methods

Dynamic detections sources in the
scene

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020 21



Classical methods

Separate static and dynamic
detections using random sample
consensus (RANSAC).

Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”. In: Commun. ACM 24.6
(June 1981)
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Classical methods

Each detection point in the point cloud gets a
direction of arrival angle to the sensor

Based on relation between vehicle speed,
radial velocity and angle of arrival, dynamic
objects can be separated as static or dynamic.

\ 4
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Classical methods

The separation is based on
the relation between angle of
arrival and radial velocity.

The relation will be
approximated with parabola .

Relative Radial Velocity [m/s]
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Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”. In: Commun. ACM

24.6 (June 1981)
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Classical methods

The RANSAC reduces the
noise and separate most of
the moving objects from the
point cloud.

Image of the scene
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Classical methods

4 )y
Radar: 5D point cloud

Preprocessing:

( GPS Information:
[latitude, longitude,
9 heading] )
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Classical methods
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Classical methods

4 D 4
Radar: 5D point cloud
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Classical methods

Loop closure with
Geometrical
Landmark Relations
(GLARE)

- Brute force
search quickly
unfeasible

- False alarm
loop detection
throws whole
map off

@Astyx GmbH / Cruise
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Classical methods
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Himstedt, Marian & Frost, Jan & Hellbach, Sven & Bohme, Hans-Joachim & Maehle, Erik. (2014). “Large scale place recognition in 2D
LIDAR scans using Geometrical Landmark Relations. “ in IEEE International Conference on Intelligent Robots and Systems.
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Classical methods

a D i T~
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Classical methods

Iterative Closest Point (ICP) optimization

- Minimize difference between two point
clouds (here submaps)

- Find transformation matrix (rotation
and translation) that transforms
starting submap to next submap with
most overlap.

- Initial transformation guess from GPS

- Iterative process until convergence

Reduces inaccuracies from using only GPS

P. J. Besl and N. D. McKay. “A method for registration of 3-D shapes”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (1992)
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Deep learning approaches
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Deep learning approaches
T __‘_ i
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Deep learning approaches
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Deep learning approaches

[0) 4

i
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2D relative pose instead of 3D pose
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Deep learning approaches

Deep neural network

)  0X, 5y, 0
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Deep neural networks for point clouds

Point clouds:
e Are unordered

e Have variable size
={p1, p2,...,pn}

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020
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PointNet

max PointNet
MLP pool +

; e
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R. Q. Charles et al. “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 77-85.
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From point clouds to graphs
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Graph convolutions

Max Pool
X2 X2

MLP

(X1, X2)=p [ ]| w=p {12 f12
shared »

X1 X1
(X1, x3) =p[ ] ==p 13 f13
X3 X3
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Graph convolutions

spatial : [EdgeConv : : EdgeConv i EdgeConv
tansform T [ X |77 mip{e4h [ X[ mipfe4 T x| mip{64)

point cloud

Yue Wang et al. “Dynamic Graph CNN for Learning on Point Clouds”. In: ACM Trans. Graph. 38 (2019), 146:1-146:12.
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Pose prediction

Point cloud
feature network \
®
| 3 |2
2 |
shared S |2|=> MLP =P Pose
| ~ |
Point cloud y AL

feature network

Vinit Sarode et al. One Framework to Register Them All: PointNet Encoding for Point Cloud Alignment. 2019.
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FlowNet3D

FlowNet3D—

point cloud 1: n;X3

point cloud 2: n,X3

scene flow: n; X3

Xingyu Liu, Charles R Qi, and Leonidas J Guibas. “FlowNet3D: Learning Scene Flow in 3D Point Clouds”. In: CVPR (2019).

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020

47



FlowNet3D
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Xingyu Liu, Charles R Qi, and Leonidas J Guibas. “FlowNet3D: Learning Scene Flow in 3D Point Clouds”. In: CVPR (2019).
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FlowNet3D
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Xingyu Liu, Charles R Qi, and Leonidas J Guibas. “FlowNet3D: Learning Scene Flow in 3D Point Clouds”. In: CVPR (2019).
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Possible improvements

e Use submaps for the first point cloud
e Refine pose estimate with ICP

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020
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Possible improvements

Point cloud
feature network

o
| 5 |2
] =
=3 -
shared S |2|=»| P =P POSC mump |CP
| o
Point cloud / 9

feature network

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020 o1



Training on KITTI dataset

Use sequences 00-07 for training

Use sequences 08-10 for evaluation

Compare PointNet, DGCNN, FlowNet3D as feature networks

Point Clouds are randomly subsampled (1000 points) to simulate sparsity

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020
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Results
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Own Results

Table 1: Rotational and translational errors on sequence 8 of the KITTI odometry dataset

Model Rotation error (in °) Translational error (in m)
25% Median  75% 25% Median  75%

PointNet 0.1947  0.4008 0.7159 0.0791 0.1606  0.2733
DGCNN 0.1580 0.3718 0.7449 0.0775  0.1557  0.2684
FlowNet3D | 0.1840 0.4033 0.7781 0.0758 0.1526 0.2652
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Own Results

Table 1: Rotational and translational errors on sequence 8 of the KITTI odometry dataset

Model Rotation error (in °) Translational error (in m)
25% Median  75% 25% Median  75%

PointNet 0.1947  0.4008 0.7159 0.0791 0.1606  0.2733
DGCNN 0.1580 0.3718 0.7449 0.0775  0.1557  0.2684
FlowNet3D | 0.1840 0.4033 0.7781 0.0758 0.1526 0.2652

Table 2: Rotational and translational errors on sequence 8 of the KITTI odometry dataset
when trained with submaps

Model Rotation error (in °©) Translational error (in m)
25% Median  75% 25% Median  75%

PointNet with submaps 0.1529 0.3394 0.6513 0.0694 0.1445 0.2563
PointNet with submaps & ICP | 0.1284 0.3130 0.6365 0.0652 0.1263 0.2577

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020
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Evaluation on KITTI| dataset
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Training on Astyx/Cruise dataset

e Radar data includes radial velocity, magnitude
e Test, whether:
o including this data has advantages
o submaps bring improvement
o using ICP is advantageous
e Evaluation has to be done on training data
o Not enough data to split into training/evaluation

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020
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Own Results

Table 3: Rotational and translational errors on Astyx sequence B. p is the number of
previous frames in the submap, f the number of features per point.

Model p f | Rotation error (in °) Translational error (in m)
25% Median 75% 25% Median  75%

PointNet 0 3 ] 0.1295 0.2612 0.4539 0.0501 0.1049  0.1815
PointNet 0 5 | 0.1122 0.2296 0.3964 0.0379 0.0759 0.1332
PointNet 5 3 ] 0.1428 0.3083  0.5480 0.0617  0.1255  0.2109
PointNet 5 5 | 0.1377 0.3008  0.5411 0.0504 0.1009  0.1697

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020



Evaluation on Astyx/Cruise dataset
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Own Results

Table 3: Rotational and translational errors on Astyx sequence B. p is the number of
previous frames in the submap, f the number of features per point.

Model p f | Rotation error (in °) Translational error (in m)
25% Median 75% 25% Median  75%

PointNet 0 3 ] 0.1295 0.2612 0.4539 0.0501 0.1049  0.1815
PointNet 0 5 | 0.1122 0.2296 0.3964 0.0379 0.0759 0.1332
PointNet 5 3 | 0.1428 0.3083  0.5480 0.0617  0.1255  0.2109
PointNet 5 5 | 0.1377 0.3008  0.5411 0.0504 0.1009  0.1697

Table 4: Rotational and translational errors on the astyx sequence B when refining the
pose estimate with ICP

Model p [ | Rotation error (in °) Translational error (in m)
25%  Median 75%  25%  Median 75%
PointNet 0 5 ] 0.0443 0.0919 0.1716 0.0208 0.0332  0.0493
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Refinement with ICP
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Thanks to LRZ for providing a GPU instance!

VCPUs 20
RAM 368GB
GPU Nvidia V100 (16 GB Video memory)

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020
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Conclusion

e Pose estimation for SLAM is possible with Radar
sSensors.

e Point cloud registration even when the point clouds are
very sparse and no further information from a GPS or
IMU is available

e Unfortunately the frame drops of the astyx dataset
prevent a proper result and evaluation of the methods

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020

67



Thanks for your attention!




Backup
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Classical methods

RANSAC steps:

1. Randomly sampling points

2. Fit curve to sampled points
3. Evaluate curve on all points
4. If enough inliers

a. Inlier points — Consensus set
b. Optimizing fitting curve on
complete Consensus set

Repeat process iteratively, then choose
best found model. (here relation between
V_r and DoA to considered static)

Relative Radial Velocity [m/s]

RANSAC with DoA and radial velocity

12 A
10 A
8 .
6 .
4 °
® L J
9 ®
2 . 3 ...a ) o..",‘°
. o ° ° 9 o °
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2 .‘l '
0 - e, e
fitting curve o
2 inlier points
e outlier points e
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Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”. In: Commun. ACM 24.6
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Classical methods

ZPXY 8

Image of the scene

-~

Original
100 _— 100
e - .'b - N ’
80 7 - .o ol i 80 i
b d ;’*. - -
GO WA N el 60 - g
‘,“.3 -’e o .'"4\-: p%.
40 - .“o.‘ . ® 'Q.\ 40 A *
" . g - ﬁ*
. TR ALY gty
20 U . 3..‘ ‘,r."‘. .f. f)" . 20 . -
0 T T - T T T 0 T T
-40 =20 0 20 40 -40 =20
¥

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020

71



FlowNet3D

Xingyu Liu, Charles R Qi, and Leonidas J Guibas. “FlowNet3D: Learning Scene Flow in 3D Point Clouds”. In: CVPR (2019).
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Static World assumption

Data Innovation Lab | Radar SLAM for Autonomous Driving | 30.07.2020

73



Static World assumption

Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2012.
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Comparison KITTI - Astyx/Cruise

Table 2: Rotational and translational errors on sequence 8 of the KITTI odometry dataset
when trained with submaps

Model Rotation error (in °) Translational error (in m)
25% Median  75% 25% Median  75%

PointNet with submaps 0.1529 0.3394 0.6513 0.0694 0.1445 0.2563
PointNet with submaps & ICP | 0.1284 0.3130 0.6365 0.0652 0.1263 0.2577

Table 4: Rotational and translational errors on the astyx sequence B when refining the
pose estimate with ICP

Model p f | Rotation error (in °) Translational error (in m)
25%  Median 75%  25%  Median 75%
PointNet 0 5 ] 0.0443 0.0919 0.1716 0.0208 0.0332  0.0493
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Comparison KITTI - Astyx/Cruise

Reasons for better performance on Astyx/Cruise dataset:
e KITTI point clouds are randomly subsampled => no interesting features
e Astyx radar points are interesting features (selected by the sensor)
e Astyx data is evaluated on training dataset
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SLAM as MaP
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SLAM as MaP
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Filtering P(z¢|o1,09, ..., 0¢)

Smoothing P(zg|o1,02,...,0¢)

MAP arg max P(zy,z9,...,2¢|01,09,...,0¢)
T1,X2,..,T¢
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Division into Front-end / Back-end

e Front-end does Filtering
e Back-end fixes errors of Front-end to get the MAP estimate

Filtering P(x¢|o1,09,...,0¢)
Smoothing P(zi]01505; 450¢)

MAP arg max P01, 5505505 07 5085 ey OF)
x1,2,..,&¢
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