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Abstract

Time series forecasting in Supply Chain has several applications such as predicting future
inbound and flows of goods or the future demand of products.

Since business decisions (e.g. inventory replenishment strategy) may be based on those
forecasts it is critical to ensure accurate, robust and interpretable predictions. Addi-
tionally, supply chain disruptions such as the Covid-19 pandemic, Suez Canal block-
ing, Shanghai lockdown or the current geopolitical/economical context have resulted in a
higher uncertainty on inbound and outbound flows.

While single-point estimates only provide limited information on our forecasted signal
(our conditional expectation), probabilistic forecasts model a representation of the condi-
tional predictive distribution of our target and therefore provide a measure of uncertainty
and variability of our variable of interest [1].

During the TUM Data Innovation Lab, we focused on researching probabilistic forecast-
ing methods. By combining the state-of-the-art fixed quantile forecaster MQTransformer
with an existing generative copula-based approach we create a new model, the
MQCopulaTransformer, that achieves competitive results compared to the MQTrans-
former. In addition, our model prevents issues like quantile crossing and adds the capa-
bility of learning cross-series and cross-time correlations.

In addition to modeling the uncertainty, we also researched Physics Informed Machine

Learning as a way to leverage prior knowledge about the system and variables we are
trying to predict. This way we enhance a data-driven approach given laws of physics or
economic properties specific to the supply chain environment.

Finally, we worked on increasing the interpretability of how these models estimate un-
certainty by researching Explainable AI techniques and embedding them on top of our
deep learning models pipeline. These techniques allow a researcher to understand the
inputs (previous timestamp or exogenous variable) driving the models’ predictions and
assess how the models learn from data and whether their predictions are reliable.

Our research and package implementation work serves as a basis for further Amazon in-
ternal research on uncertainty quantification within the supply chain.
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1 Introduction

Every day, millions of packages travel through the Amazon Network, most of them using
the ”Fulfillment by Amazon (FBA)” service, which allows individual, third-party sellers
to leverage Amazon infrastructure and supply chain. This poses a huge logistic challenge,
as shipments created and shipped from these sellers are unpredictable for Amazon. At the
same time, Amazon needs to plan capacities and inventory levels in order not to overload
warehouses (called Fulfillment Centers or FCs) or underuse them.

Therefore, quantifying this uncertainty is a critical business issue to improve service per-
formance, drive down costs and allocate resources e↵ectively. This leads to the task of
our TUM Data Innovation Lab Project: ”Uncertainty Quantification and Probabilistic
Forecasting”.

1.1 Inbound Volume Prediction Problem for Amazon FBA

Figure 1: Problem Setup: Amazon FBA

Our problem setup is visualized in the sketch below.

Supplier

FC 1 FC 2

Customers
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The business problem for Amazon is to manage the inbound volume at each FC, e.g. how
many items will arrive on a given day. Two key questions arise:

• Can the FC handle the arrivals?

• Can it store all items?

This leads to the requirement of forecasting inbound volume on an FC level. FBA sellers
are individual agents into whose strategy and plans Amazon only has limited visibility -
we do not control when a seller will create their next shipment. Additionally, the shipping
from China and Europe introduces additional uncertainty (due to the longer lead time
during which transportation can again be subject to di↵erent delays and bottlenecks).

1.2 Project Tasks and Achievements

The goal of our project has been to develop probabilistic forecasting and explainable ML
models, by researching the inner workings of algorithms and investigating novel literature
available, to estimate and reduce uncertainty for Amazon supply chain business applica-
tions.

For this, we began with Deep Quantile Forecasting in Chapter 2 and developed a
new, state-of-the-art time series forecaster (MQCopulaTransformer). We developed a
framework to test and benchmark multiple time series forecasters on several datasets. We
present improvements on quantile learning to remove quantile crossing, a known problem
in traditional quantile forecasters [2], as when this happens, they no longer output a valid
representation of the distribution.

Next, we studied Physics Guided Machine Learning in Chapter 3, to incorporate
known physical knowledge into the joint forecasting of several variables of interest. We
propose a framework of general guided machine learning, usable to guide a data-driven
machine learning model into a direction defined by a functional relationship, such as an
economic property. Augmenting a data-driven approach with prior physical or business
knowledge makes it less reliant on historical data only. This aims at improving the model’s
robustness and reducing uncertainty in face of distributional shifts, which are di�cult to
estimate from past data.

Lastly, to reduce uncertainty for Amazon business stakeholders and increase trustabil-

ity and adoption of a given model, we researched Explainable Artificial Intelligence

techniques in Chapter 4, focusing on LIME [3] (locally interpretable model agnostic im-
plementations). This helps in explaining model predictions to non-technical business
stakeholders as well as controlling whether the model’s prediction makes intuitive sense
and one can trust its output. We developed a pipeline to adapt LIME to multivariate
time series forecasting, a setting in which it was not yet used.
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2 Neural Models for Probabilistic Time Series Fore-

casting

2.1 Introduction and Related Work

Forecasting

In forecasting we want to predict the point estimate of our target variable in the future
given the past information. Classical approaches like ARIMA [4] fail to deal with the
complexity of real world time series datasets as those often include multiple covariates
dynamically changing through time, correlated time series, long term dependencies and
nonlinear relations between inputs and outputs [1]. Deep neural networks have been
shown to perform well being competitive or beating classical approaches like ARIMA or
Exponential Smoothing [5, 6] on current benchmarks [7, 8].

Autoregressive vs Multi-Step-Ahead

There exist two major types of approaches: autoregressive and multi-step-ahead forecast-
ers. In the autoregressive setting we only predict one point ahead and then for the next
prediction feed this point into our forecaster to obtain the next value.[1]
Let y denote the the value of the time series, t denote the forecasting creation time (FCT)
from which we want to forecast the future value of the target, let C denote the number
of past values we consider for our prediction and let f denote our forecaster. Then in the
autoregressive setting we predict the future value of our target yt+1 as yt+1 = f(yt�C:t)
and yt+2 = f(yt+1�C:t+1).
Chevillon [9] showed that directly predicting multiple steps in time ahead is less biased and
more stable compared to the autoregressive strategy. Let K denote the number of future
time horizons to predict then we retrieve our target prediction yt:t+K as yt:t+K = f(yt�C:t).

Probabilistic Forecasting

Probabilistic forecasting can be thought of an extension of forecasting where we are in-
terested in the full probability distribution of our target variable instead of only a point
prediction. The first approach assumes that the data generating process follows a para-
metric distribution, where the parameters are functions of the inputs. However, it is
sometimes hard to fit on real data, as some datasets exhibit fat tail behaviors. [1]
Another non-parametric approach uses Quantile Loss (QL) to learn a fixed set of quantiles
of the distribution for each forecasting point in time [1]. Since having access to a fixed
set of quantiles does not lead to the marginal quantile function, Gouttes et al. [10] intro-
duced the concept of Implicit Quantile Networks (IQN) which makes it possible to learn
the marginal quantile functions using QL. Wen and Torkkola [11] added on top of that a
Gaussian Copula to learn the joint distribution between the marginal quantile functions.
We will discuss QL, IQN and the copula in greater detail in later sections (2.2.1, 2.2.2
and 2.2.3 respectively).

Related Work

Non-parametric Multi-Horizon probabilistic forecasters have been used in several previous
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works. Wen et al. [1] introduced MQR(C)NN an encoder decoder neural network that
uses a RNN or CNN to encode the timeseries data into a hidden state representation and
a Multi-Layer-Perceptron (MLP) decoder that predicts the quantiles for each forecasting
point in time. In a later work Wen and Torkkola [11] extend the MQR(C)NN with IQN
and a Copula to estimate the full joint distribution over all the forecasting points in time.
Lim et al. [12] introduced Temporal Fusion Transformer (TFT) as another multi horizon
forecaster that uses a di↵erent encoder/decoder structure with a combination of LSTMs
and Attention layers that outperforms MQR(C)NN. Eisenach et al. [13] extended the
decoder of MQR(C)NN with two di↵erent purposed attention layers in the work to be
competetive with TFT on some benchmarks and outperform it on others.

2.2 Theory

We focused our work on the non-parametric approaches where we learned our models on
three distribution-learning methods.

2.2.1 Quantile Loss

For a random variable X, let FX(x) be its cumulative distribution function. The ↵
th

quantile of X is defined as

qX(↵) := inf{x 2 R : F (x) � ↵},

where in the case of F being invertible the relation

qX(↵) = F
�1
X

(↵)

holds [14]. Quantile loss was introduced in quantile regression, in which the question of
how to produce the desired quantile regression lines (or hyperplanes) was first addressed
by [15] which takes the form

QL(y, ŷ, q) = q(y � ŷ)+ + (1� q)(ŷ � y)+, (1)

where y denotes the true target and ŷ denotes the predicted target. In our setting, let
k 2 {1, 2, ...K} be the forecasting horizons and Q be the fixed set of sorted quantile indices
(e.g. [0.1, 0.5, 0.9]). We are interested in the following loss that takes of the form

L(y, ŷ, Q) =
KX

k=1

X

q2Q

q(y � ŷ(q, k))+ + (1� q)(ŷ(q, k)� y)+, (2)

where y is the true target and ŷ(q, k) is the qth quantile of prediction at forecasting horizon
k.

While the quantile loss allows us to e↵ectively quantify uncertainty, fit underlying distri-
butions and also provide full probabilistic predictions through joint learning over multiple
quantile levels, it can happen that two or more predicted quantile functions may cross or
overlap, especially when several quantiles are jointly learned. This is problematic since it
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violates the monotonic consistency of the conditional quantile function.
For two quantile indices qi, qj 2 Q with i < j we say two quantiles cross if ŷ(qi) > ŷ(qj).
Thus, we came up with the idea to sum over the di↵erences (ŷ(qi)� ŷ(qj))+ for 8qi, qj 2
Q, s.t. i < j and weight each di↵erence by (j � i). This weighting penalizes too large
quantile predictions in lower quantiles indices that cross several larger quantile indices
very hard.
This leads to the Quantile Cross Loss (QCL):

QCL(y, ŷ, Q,�) = L(y, ŷ, Q) + �JQ(ŷ) (3)

where � is the penalty strength and JQ(ŷ) is a weighted penalty term:

JQ(ŷ) =
KX

k=1

X

i<j

qi,qj2Q

(j � i)(ŷ(qi, k)� ŷ(qj, k))+. (4)

2.2.2 Implicit Quantile Learning

In MQR(C)NN, TFT and MQTransformers the output of the model is a fixed set of
quantiles. This means that we only have access to this fixed set and if we want to query
arbitrary quantiles or want to have access to the full quantile function we need to inter-/
extrapolate the quantile predictions [11].
The main idea of implicit quantile learning is instead of feeding our model the same fixed
set of quantile indices each batch (e.g. [0.1, 0.5, 0.9]), we sample a set of Q⇤ di↵erent
quantile indices from the uniform distribution for each batch, let the model predict the
corresponding quantiles ŷ and minimize the quantile loss QL(y, ŷ, Q⇤) across all sampled
quantile indices and forecasting horizons. [10]
This allows us to query arbitrary quantile queries from the model. As discussed later
Section 2.4, we could see that using implicit quantile learning decreased the crossing
percentage for all models and for some yielded no crossing at all. However since we
cannot guarantee the absence of quantile crossing we still have no valid quantile function.

2.2.3 Learning the Joint Distribution

When predicting K steps ahead and using a fixed set of quantiles or IQN to make pre-
dictions we treat the steps k = 1, ..., K ahead as independent from each other. However,
for real world datasets this independence assumption is unlikely to hold, hence we want
to forecast a representation of the conditional joint distribution through time.
Wen and Torkkola [11] proposed to use a Gaussian Copula to learn the joint distribution
across theK steps ahead. A Copula is the joint distribution function of a set of marginally
distributed standard uniform random variables [11]. Sklars Theorem [16] states that we
can decompose every N-variate distribution function into their marginal distribution func-
tions and a unique Copula C(u),u = u1, ..., uN = F1(y1), ..., FN(yN)

F (y) =
NY

i

Fi(yi)C(u) (5)
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A gaussian copula assumes that ��1(u) ⇠ N (0, R), with � the standard normal cdf and
R a K-by-K covariance matrix. (R 2 RK⇥K )
The fundamental idea of their approach is to first learn for each step k the marginal
quantile function QFk parameterized as a IQN, followed by learning the inverse of it
which is the marginal distribution function Fk by minimizing the reconstruction loss.
After that we retrieve for each k uk = Fk(yt+k), yielding u = (u1, ..., uK) and z = ��1(u).
Learning the copula reduces to learning a model L(h⇤) that outputs conditional covariance
matrix R for some input h

⇤. h
⇤ is the output of a decoder network that learns the

relationship between time series input xt�C:t and known future information xt+1:t+K . Due
to computational stability the model outputs the Choelsky lower triangular matrix L such
that R = LL

T . This can be learned by minimizing the negative log likelihood loss NLL

NLL(L, z) = 2 log(|L|) + kL�1
zk22 + const (6)

To sample from the joint distribution for some sample x we draw ẑ ⇠ N (0, IK⇥K), then
obtain û

⇤ = �(L(h⇤)ẑ) and then get our sample time series as ŷt+k = QFk(û⇤
k
).

We obtain our quantile predictions by sampling n time series ŷ(i)
t+1:t+K

, i = 1, 2, ..., n from
the joint distribution and computing the empirical quantiles on those samples. [11]

Additionally, Wen and Torkkola [11] show that one can retrieve the implied indepen-
dent latent variables of a given observational series as z̃ = L

�1
zj for series j = 1, ...,M .

Those can be stacked together into an M ⇥K matrix from which the cross-series ŜM⇥M

and cross-time T̂K⇥K correlation matrices can be estimated which allow insights into the
underlying correlation patterns.

2.3 Model Structure

MQTransformer has shown to be equivalent or to outperform state-of-the art approaches
[13]. However, it does neither output the marginal quantile functions nor joint predictive
distribution. Thus, we combine concepts from MQTransformer together with concepts
from IQN and the copula from Wen and Torkkola [11] to combine the strong predictive
power of MQTransformer with the capability to output the predictive joint distribution
through time.
We implemented our model, MQCopulaTransformer(MQCT), from scratch in pytorch
[17] as it is easy to use and extend and currently has the largest share in the scientific
community [18]. While there already exist implementations of MQCNN in gluon [19], a
library using the mxnet deep learning framework [20], it has a smaller community and is
more complex to use.
We structure our model into three di↵erent parts: the encoder, the decoder and the loss.
The encoder processes the time series data xt�C:t and outputs a latent representation ht

which then serves as input into the decoder. The decoder receives ht together with the
known future information xt:t+K(for example the information of a public holiday or the
weekday) and then computes another dense representation h

⇤
t
. h

⇤
t
is then fed into the

copula loss part which handles the computation of the quantile function, the inverse of it
(distribution function) and the copula. We discuss these three component in greater detail
below. In addition, with advent of recent development of transformer models in time series
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forecasting, we build our models based on the transformer extension with di↵erent types
of attention layers in the decoder, which then also take the latent representation ht from
the encoder to produce the prediction.

Encoder

For the encoder we implemented and compared several di↵erent variants including stan-
dard Recurrent Neural Networks (RNN), Long-Short-Term-Memory Network (LSTM),
Gated Recurrent Unit (GRU), a Wavenet [21] like Convolutional Neural Network (CNN)
and structurally simpler version of Wavenet. The simpler version omits the PixelCNN
[22] like gated activation unit and consists of a stack of dilated causal convolutional layers
which were introduced in this context by Chen et al. [23]. The simpler CNN encoder we
implemented follows the architecture of the CNN encoder implementation in gluon [19].
We found that the simpler CNN performed best which is consistent with the literature
[12, 1].

Decoder

Traditional MQCNN uses multi-layer perceptron(MLP) in the decoder to produce quan-
tiles of predictions and by design of this sequence to sequence structure, we face the
’information bottleneck’ problem where the decoder receives information from the en-
coder via a single hidden state. In recent years, with the advent of transformer models
in time series forecasting, this problem was solved by Eisenach et al. [24], where they
used two di↵erent types of attention layers in the decoder to produce predictions. In our
model, we took the inspiration from the decoder of MQTransformer and further combined
it with the copula.

Copula

While in 2.2.3 we discussed the theoretical foundations of the copula learning in the
following we discuss the concrete decisions we took for implementation. The copula of our
model consists of three di↵erent parts. For the first one, the IQN, we took inspiration from
the implementation of the pytorch forecasting library [25], removed the cosine embedding
and changed the sampling strategy such that each element of the batch receives di↵erent
quantile samples instead of the same ones as originally proposed. We noticed that this
improved the training and made the inversion of the function easier.
We implemented the other two parts from scratch as there is no public implementation
available, while following the specification in the paper of Wen and Torkkola [11].
The first part is the IQN. For each batch we sample a standard uniform tensor u of
quantile indices. Then we use a MLP QF (h⇤

t
, u) that outputs the quantile predictions ŷ

and is then optimized by minimizing the quantile loss.
The second part is the inverse of the QF . We train it in an autoencoder fashion: first we
freeze QF , sample quantile indices u, then we use QF to compute predictions ŷ. After
that we train the inverse MLP by passing the quantile predictions together with h

⇤
t
, to

obtain the predicted quantile indices û as û = F (h⇤
t
, ŷ). We learn the weights of F by

minimizing the reconstruction loss ku� ûk22.
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The last part is the copula. We first freeze the weights of F and QF use a MLP L(h⇤
t
)

that outputs the cholesky lower triangular matrix such that R = LL
T is the covariance

matrix of the gaussian copula. We use the tricks from Wen and Torkkola [11] to increase
the numerical stability and ensure that R is a proper covariance matrix. We learn the
weights by minimizing the negative log likelihood as specified in equation 6. Note that
the input to the copula x in section 2.2.3 corresponds to the output of the decoder h⇤

t
in

this section.

2.4 Implementation and Benchmarks

Figure 2: Experiment Running Overview. The figure shows the components that are
involved during the running of our experiments. One experiment consists of a dataset, a
model and an evaluator. The interactions between those components are orchestrated by
the Experiment class.
Each dataset is implemented as a class that handles the dataset loading from Amazon
Web Services (AWS) remote storage, the preprocessing and returns a data loader. The
trainer class from pytorch lightning [26] then consumes this dataloader and the initialized
model class and trains the model. After training is finished the Evaluator class saves the
metrics and plots to a remote storage.
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2.4.1 Implementation

We implemented a library that supports several models and makes running and evaluation
of experiments easy.
While we only introduce our final model in detail, we implemented several ones that share
the same basic structure: all of them consist of an encoder, decoder and a loss all imple-
mented as python classes.
For the encoder we implemented RNN, LSTM, GRU, the Wavenet and simplified Wavenet
CNN encoders. For the decoder we implemented a seperated MQR(C)NN style decoder,
a simplified version only using a MLP as well as a MQTransformer style decoder and a
custom Transformer encoder.
We implemented several di↵erent losses: standard QuantileLoss, QuantileCrossLoss, Ex-
pectileLoss, ImplicitQuantileLoss and Copula Loss.
Due to the way we designed the library we can combine di↵erent encoders, decoders and
losses easily. Those components are connected through their input and output dimen-
sions.
To retrieve those dimensions we implemented class functions such that those can be set
automatically without having to hard code changes in the code. This modular structure
enables quick experimentation and extension.
Figure 2 shows a visualization that explains the experiment running flow.

2.4.2 Benchmarks

Dataset

We ran experiments on public datasets and hand-crafted synthetic datasets to reflect
our model on di↵erent challenges. For completeness, we first evaluate our model on the
electricity dataset[27] which focuses on simpler univariate time series forecasting, then
we consider the hand-crafted synthetic datasets implemented on our own to see how our
models handle changing signals. Last, we test our data on the Stallion dataset [28] which
has much smaller size and is expected to be a harder task.

Metrics

One evaluation metric we already discussed is the quantile loss as defined in 2. We report
the quantile loss on the set of quantile indices [0.01,0.02,...,0.99]. Another metric we use
is the quantile crossing percentage

CrossingPercentage(ŷ, Q) =
1

N ⇥K ⇥ |Q|

NX

n=1

KX

k=1

|Q|X

i=1

1(ŷ(qi�1,k)>ŷ(qi,k) (7)

with FCT t, N time series samples, K forecasting horizons, and a set of quantiles Q. The
last set of key metrics are the Calibration and ExpectedCalibrationError. Calibration
measures how well our quantile predictions are calibrated. To give an example, when we
want to predict the median (p50 quantile) then 50 percent of the data should be smaller
or equal than the predicted value. Calibration measures for each quantile prediction ŷ(q)
how much percent of the data are smaller or equal to it. The CalibrationError takes the
absolute value of the di↵erence between this percentage and the corresponding quantile
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index. The ExpectedCalibrationError takes the mean of the CalibrationError over all
quantile indices q.

Calibration(y, ŷ, q) =
1

N ⇥K

NX

n=1

KX

k=1

1(yn,k<=ŷn(q,k)) (8)

ExpectedCalibrationError(y, ŷ, Q) =
1

|Q|
X

q2Q

|Calibration(y, ŷ, q)� q| (9)

Experiment Results Below we show results on the electricity dataset on the metrics
introduced above.

Electricity Results

In accordance with [7], we use the past week (168 hours) to predict the power usage of
370 users over the next 24 hours.

Figure 3: The left column shows the comparison across the following models: MQCNN
Mxnet v.s MQCNN pytorch v.s MQTransfromer learned on quantile loss then evaluated
on mean quantile loss, expected calibration error and quantile crossing loss, and on the
right is comparison across MQTransformer learned on di↵erent loss: QL v.s QCL v.s IQL
v.s Copula then evaluated on mean quantile loss, expected calibration error and quantile
crossing loss.
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As from the plots, with only the QL, the quantile crossing percentage is rather high at
18%. QCL reduces e↵ectively to 11% while IQN significantly cut it down to 3%. But
both fails to reach the crossing percentage of zero. MQCopulaTransformer achieved a
crossing percentage of 0 as expected since we are using empirical quantiles on generated
sample paths. IQN has the best mean quantile loss and expected calibration error among
all models. However, it is only slightly better than MQCopulaTransfromer with respect
to the loss while not guaranteeing zero quantile crossing.

Figure 4: Three sample predictions of MQCopulaTransformer on the electricity dataset
selected to show di↵erent peak behaviour. The black line shows the true signal, red lines
show generated sample paths and the blue lines show the di↵erent quantile predictions of
the p10, p50 and p90 quantiles

From the sample predictions in Figure 4 we see that even though our model fails to cap-
ture all of the strong signals we observe that it barely missed to capture the tendency of
the target variable. And although the quantiles of predictions seems to be very close to
each other, quantile crossing percentage is 0 as by design. Figure 5 shows the correlation
matrices for the dataset.
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Figure 5: Sample Correlation Matrices created according to Wen and Torkkola [11] as
discussed in section 2.2.3 on the electricity dataset. Bright values indicate high positive
correlations while dark values indicate high negative correlation. The image on the left
hand side shows the correlation between di↵erent time series while the one on the right
hand side shows correlation between di↵erent time horizons

We achieved very good results on the MQCopulaTransformer which enables 0 crossing
quantiles.
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3 Physics Informed and Guided Machine Learning

In the context of global supply chain disruptions in recent years (Covid-19, Suez Canal
blockage, Shanghai lockdown, War in Ukraine) increased attention has been on poten-
tial disruptions in the distribution of supply chain forecasts. These shifts are inherently
unpredictable from historical data only, on which state of the art time series forecasting
models, including our MQCopulaTransformer, rely exclusively. Therefore ways to make
model training more robust and less reliant on data only are needed.

Traditionally a technique for improved generalization is regularization. It is a way to bias
the models weights toward zero and has been observed to improve model generalization
[29].

This lead us to investigate physics informed machine learning. This is a technique to
regularize models based on a physical law that is believed to govern the variables we try
to predict. Since physical laws don’t change over time, our idea is to improve model
robustness and reduce uncertainty with this approach by letting the model use both data
and prior knowledge, the latter formulated in the regularization term. Traditionally the
’prior’ knowledge formulated in regularization that biases weights to zero is that weights
shouldn’t be too high or volatile, but with a specific physical formula, we aim to provide
better initial bias.

We furthermore expanded on this physics informed machine learning idea by using any
formula describing an economic model or business insight as regularization. This intro-
duces guided machine learning. Here we guide (or bias) the model into a certain direction
by adding a regularization term to the loss function, which is 0 when our guidance function
is zero. Any economic rationale, equation, any prior knowledge from business intelligence
that can be expressed as a mathematical formula can be incorporated into model training
in this way.

Of course economic and business regularization is not as hard a constraint as physical
laws (which could be considered by a smaller penalty weight). The guidance could also
turn out to be wrong and worsen performance. Given a good guidance function however
the model is not only guided by data, but also by prior knowledge from a researcher or
businessperson. They bring it to the table through their extensive knowledge of the given
learning task.

3.1 Introduction and Related Work

One of the biggest advantages of many machine learning models is their ability perform
well in tasks, where it is di�cult or impossible for humans to formulate the underlying
rules or principles of the task, or even give explicit instructions to solve them. One exam-
ple for this is image recognition, where it is very challenging to define manual algorithms
that lead to good results, but relatively easy to train a Neural Network to do it. This
”black box” approach however, requires a lot of data to succeed. A lack of (good) data,
or data whose distribution shifts quickly, is often a big problem and can be addressed
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by incorporating prior knowledge about the problem. One such way is incorporation of
physical rules that govern the system which we want to analyze.

We can easily construct an example where more knowledge of the physics lead to less need
for data (see Figure 6). Suppose we want to estimate the trajectory of an object flying
through R2 and that its starting position is (0, 0). It is well known, that the trajectory
of such an object is described by the equation

y = tan(↵) · x� g

2v0 cos2(↵)
· x2

,

where g 2 R is a constant known to us, but the launch angle ↵ and the starting velocity v0

are unknown. But since we miss only 2 parameters, in order to know the whole parabola,

Figure 6: Data vs Physics [30] Figure 7: Trajectory of an object

we need to make only two distinct measurements (x1, y1) 6= (x2, y2) of the trajectory.
These two measurements would give us a system of two equations, which we could solve
for v0 and ↵, and thus obtaining all the points on the trajectory. Of course in this case
machine learning is not needed at all, so the question arises what to do if we don’t know
all of the governing physics of a problem, but only some part of it or we only have a
simplified model of reality.

If the laws of a physical system are well known and stable, one way of incorporating knowl-
edge of the physical system is to directly design the ML model in a way that it better
represents the physical laws. Examples for this are the very successful Convolutional Neu-
ral Networks (CNN) in image recognition, or Recurrent Neural Neural Networks (RNN)
for sequential data [30], [31], [32].

Another approach, and the one will focus on in this text, is not to incorporate the physics
in the design of the ML model, but instead in its training. In practice, both methods
can and should be combined. We want to model physical flows for supply chains. A
system of ODEs describing the flow of the supply chain network and a machine learning
model, trained on both the data and the physical rules, should give better predictions and
predictions more consistent with physical reality. In practice, changing the loss function
is also much less work intensive than developing a new network architecture.

Our problem setup for physics informed machine learning is similar to the work of
Maziar Raissi and Karniadakis [33]. We begin with a system of coupled ordinary dif-
ferential equations dependent on time t. Let y : R ! Rn be a vector valued n times
di↵erentiable function dependent on the time. Let y, y

1
, . . . , y

n be its derivatives with
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respect to the time, i.e. y
i : R ! Rn, t 7! (d

i
y1

dt
i (t), . . . , (

d
i
yn

dt
i (t)) and F : R ⇥ Rn

2 7! Rn.
Then the system of ordinary di↵erential equation is satisfied, if

F (t, y, y1, . . . , yn) = 0. (10)

Assume now in a first step that we know F and want to obtain the solution y of the ODE
system. Since we know that neural networks can approximate any continuous function
arbitrarily well [34] , we model y as a neural network

y = f✓ : R ! Rn
,

where ✓ 2 Rm are the weights, withm 2 N being the number of parameters of the network.
Since the structure of a neural network is well known the derivatives f✓, f

1
✓
, . . . , f

n

✓
can

be calculated through automatic di↵erentiation present in modern day machine learning
libraries such as pytorch.

Let now {(t1, y1), . . . , (tN , yN)}be a set of training data, with (ti, yi) 2 R ⇥ Rn. Ideally,
for any i 2 {1, . . . , N} we wish to have

f✓(ti) = yi,

but also
F (ti, f✓(ti), f

1
✓
(ti), . . . , f

n

✓
(ti)) = 0.

The idea of physical informed neural networks is to solve the optimization problem

argmin
✓2Rm

1

N

NX

i=1

|f✓(ti)� yi|2 +
1

N

NX

i=1

|F (ti, f✓(ti), f
1
✓
(ti), . . . , f

n

✓
(ti))|2. (11)

Variations of this, such as scaling parameters for the two MSE’s, or di↵erent loss functions
than the MSE, are also possible.

In a second step, we now assume that we don’t know F exactly, but instead we only know
that it belongs to a family of functions {F� : R ⇥ Rn

2 7! Rn | � 2 Rl}. This of course
leads also to a family of ODE systems

F�(t, y, y
1
, . . . , y

n) = 0.

But if our assumption is right, and the dynamics of our real life problem follow one of
these ODE systems, then our training data {(t1, y1), . . . , (tN , yN)} should approximately
follow the solution y of this system for some specific parameter vector �̂. To try and find
both �̂ and y, we now need to solve the optimization problem

argmin
✓2Rm,�2Rl

1

N

NX

i=1

|f✓(ti)� yi|2 +
1

N

NX

i=1

|F�(ti, f✓(ti), f
1
✓
(ti), . . . , f

n

✓
(ti))|2. (12)

Assuming that F� is di↵erentiable with respect to �, we can again use automatic di↵er-
entiation to solve (12).

It is important to note, that the idea of adding a second constraining loss into the training,
is by no means limited to di↵erential equations. Any law or principle, that the output
of the neural network must obey, can be used. Although they didn’t use feed forward
networks, a good example of this is the use of conservation of energy in [35].
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3.2 Applications in Supply Chain Forecasting

A supply chain is a system which can described as physical flow. Therefore, we can impose
constraints in the form of an ordinary di↵erential equation (ODE) to enforce that models
which are predicting di↵erent parameters of interest independently from each other, to-
gether produce physically consistent forecasts.

We consider a simplified supply chain with 5 variables, dependent on time t: Shipment
Creations by sellers S(t), Shipments in Transit Tr(t), Arrival Inbound at the FC Ib(t),
Inventory of the FC Inv(t) and Outbound volume O(t).

Shipment Creation

Transit

Inbound

Inventory

Outbound

The Models learning the targets are parametrized by ✓:

t 7! (S(t), T r(t), Ib(t), Inv(t), O(t))

t 7! (S✓(t), T r✓(t), Ib✓(t), Inv✓(t), O✓(t))
(13)

Notice that we have two di↵erent types of nodes, whom we call buckets and gates. A
bucket is a node which can fill up or empty, and whose derivative is defined by its gate
nodes via the conservation of mass law, which states that the nodes must adhere to the
ODEs:

Ṫ r(t) = S(t)� Ib(t)

˙Inv(t) = Ib(t)�O(t)
(14)

The gate nodes on the other hand measure strength of flow into and out of nodes.

From a business perspective this modeling is interesting as it not only enforces physically
more realistic results (e.g. Inventory can’t increase a lot more than Inbound - Outbound
would allow), but also allows for simulations.

Consider the event of an economic shock happening and S(t) decreasing significantly.
Through the joint training, this decrease will propagate fast through the other networks
and decrease the nodes downstream, adjusting all to the reality of the new situation. The
same way a constraint imposed by Amazon on shipment creation would propagate quickly
through the network. A bottleneck in Transit would reduce the amount of Inbound ex-
pected in the near future.
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These variables are not only connected by the physics of a supply chain, but also by eco-
nomic connections and expectations of businesspersons on the respective other variables.
Therefore, we present more ways to incorporate expert knowledge into the joint modeling
in the next chapter 3.3.

3.3 Guided Machine Learning

The idea of combining domain knowledge with statistical analysis is also present in Causal
Diagrams [36]. There statistical variables are arranged in a graph with directed edges,
called causal diagrams, and the edges represent causal relationships between variables.
The graph can be estimated from data [37], but often expert domain knowledge is used
to assist in the creation of the causal diagram. Then the combination of prior domain
knowledge and statistical data allows deeper analysis, especially causal analysis in this
case.

With a similar idea of combining domain knowledge and data, in Guided Machine Learn-
ing we expand on Physics Informed Machine Learning. We draw inspiration from the idea
that forecasting can be improved by bridging data driven and physics driven modeling
[38]. As seen in Chapter 3.1, a formula believed to govern a modeling system can be
incorporated into training a machine learning model by moving all terms of the formula
to one side (setting it equal to 0) and adding this as a regularization constraint.

Consider the general supervised learning task f : X ! Y , the estimation of the functional
relationship f being f✓, parameterized by weights ✓. Whenever a functional relationship
X ⇥Y holds , g : X ⇥Y ! {0}, or a di↵erential equation w.r.t. f holds (which we express
via g : ((f (1)

, ...f
(n))⇥ X ⇥ Y) ! R

d, n being the amount of times f is continuously dif-
ferentiable) and d being the number of equations that hold. We call this g the guidance
function.

Then the usual loss function L(x, y, f✓) (for example the squared error loss, L(x, y, f✓) =
ky�f✓(x)k22), which penalizes how well f✓ matches y, can be augmented with kg(x, y, f✓)k2:

Lg(x, y, f✓,�) = L(x, y, f✓) + �kg(x, y, f✓)k2 (15)

In addition to matching the data, the model f✓ now is also encouraged to adhere to the
equation described by g. Depending on the confidence in g or after validation testing, the
parameter � can be tuned.

Applications

During our theoretical analysis in particular we thought of two ways to improve training
via the guided machine learning approach.

The Economic Ordering Quantity EOQ is a supply chain model giving a closed form
solution to the optimal quantity of items to ship, considering s: shipment cost, h: holding
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cost per year, T one year and demand for one year
R

T

0 O(t) [39]:

C(0) =

s
2
R

T

0 O(t)s

h
(16)

with N := d
R T
0 O(t)

C(0) e shipments created per year, at times k�1
N

T , k 2 [N ].

Furthermore the shipment creation process, which due to the FBA services structure is
very unpredictable, is decided by seller behaviour, who in turn are influenced by expec-
tations on how much they can sell, therefore demand pull shipment creation could be a
formula to improve model training:

C(t) = ↵O(t)� �Tr(t)� �Inv(t) (17)

with ↵, �, � learnable parameters, which later can be used to assess strenght of the rela-
tionship and seller behaviour under di↵erent circumstances.

3.4 Conclusion

In this section we introduced how physics informed machine learning, and in general
guided machine learning can be applied to supply chain forecasting as well as their theo-
retical frameworks. If a guided model can learn hyperparameters of the guidance function,
e.g. ↵, �, � in equation (17), while having good accuracy, these hyperparameters provide
(model-specific) explainability into the guidance function. This desirable feature of gain-
ing explainability is explored further in the next Chapter 4 for the model agnostic case.

(Physics) Guided Machine Learning is an open research field for Amazon and we encour-
age further research as well as empirical experiments to test practical applicability. For
our project we decided to focus on other aspects, such as explainability, due to limited
time.
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4 Explainability to Understand the Uncertainty Es-

timator

Explainable AI (XAI) is the study of methodologies that help gain insight into complex
non-linear ML models [40]. While having insight into the inner workings of a model does
not directly reduce uncertainty, it is a useful tool to quantify and understand it. It also
can be a stepping stone to reduce future uncertainty. Imagine a scenario where the input
data of a model can only be of a certain size, for example due to memory constraints.
Once we know which signals are important for a model to make inference on, we can
then increase the quality of these important signals. Therefore we improve future forecast
quality and reduce uncertainty, while still maintaining the same input data size.

A second important use case of XAI is the accessibility to Data Science it creates to non-
experts of the field. Business stakeholders will have increased trust in the models, once
they are more interpretable and understandable for a non-technical sta↵.

4.1 Introduction and Related Work

During this TUM DI Lab project we looked at two popular approaches in XAI. The first
one is the Shapley value (SHAP), which was originally brought up by Lloyd Shapley in the
field of game theory [41]. It is a numerical value assigned to each player in a cooperative
game with a payout, that measures how much each player contributes to the payout. In
the machine learning setting, the ”game” is making a prediction, the ”players” are the
regressors, and the ”payout” is the numerical prediction value [42].
The second approach we studied is Locally interpretable model-agnostic explanations
(LIME) [3]. The premise of LIME is to transform the feature space of an ML model f to
a much simpler surrogate feature space, and then train a linear explainable model g in a
neighbourhood of a point in the surrogate feature space, to mimic the behaviour of the
original model. The explainability of the linear model can then be used to explain the
original model f .
Both LIME and SHAP have the advantage of being model agnostic, meaning that in
theory they can be applied to a broad range of ML models under almost no further con-
ditions. Both approaches also have publicly available implementations, namely [43] and
[44]. In the end, we concentrated on LIME, as SHAP is very computationally expensive
when dealing with a large number of regressors, which would be a problem when dealing
with big time series data [42].

So far LIME has found applications in the areas of image classification [44], text clas-
sification, time series classification [45] and regression on low dimensional tabular data
[44]. The innovation of our work during the TUM DI-LAB regarding explainability lies in
applying LIME to time series regression tasks, as well as to multi outpout, multihorizon
models. For that we implemented a data processing pipeline that provides an interface
between LIME and our model implementations described in Section 2.4.



4 EXPLAINABILITY TO UNDERSTAND THE UNCERTAINTY ESTIMATOR 22

4.2 Theory

As already mentioned, we start the LIME algorithm with a trained ML model f : X ! R,
where X is the feature space [3]. A typical feature space can be images, time series, or a
text data sace. Next, we pick an instance x 2 X, where we want to explain the prediction
f(x). To obtain the surrogate space X

0, we divide the instance x into d 2 N segments,
like for example superpixels in image data, or window segments in time series data. Then
our surrogate space is X 0 = {0, 1}d, where each dimension corresponds to one segment in
x. Our original instance x corresponds to x

0 = [1, 1, . . . , 1] 2 X
0 and through randomly

turning entries of x0 to 0, we obtain samples z0 2 X
0 in a neighbourhood of x0. Through a

pertubation transformation ' : X 0 ! X, these samples are mapped to X. The only rule
' must obey is that an entry of 1 gets mapped to the corresponding unchanged segment
of x, while an entry of 0 gets mapped to an altered version of the corresponding segment.
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Figure 8: Pertubation Transformation

As shown in Figure 8 on the right, in the case of time series, a pertubation transformation
can be to map a 0 to the mean of the corresponding segment of the original instance x

[45]. Note that this yields '(x0) = x

Note that usually ' is only injective, not surjective. Thus, we can only define the inverse
as '�1 : '(X 0) ! X

0. In this way we obtained the training data set

Z = {('(z0
), z

0
) | z0

sampled from x
0} ⇢ X ⇥X

0

for the local model. If even after the segmentation the number of features d of the
surrogate space is too high, it is further reduced by taking only into account K 2 N,
K  d, features. We call K 2 N the length of the explanation. To be more precise, for an
element z

0 2 X
0
we denote with z

0

|K 2 {0, 1}K taking only K fixed entries of z0. Then the
local model is going to be

g : {0, 1}K ! R
z
0 7! !

>
z
0
+ !0,
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where we determine the weights ! 2 RK , !0 2 R by solving the linear regression problem

argmin
!2RK ,!02R

X

('(z0 ),z0 )2Z

⇡x('(z
0
))
⇣
f('(z

0
))� g(z

0

|K))
⌘2

. (18)

Here ⇡x : X ! R is some function that measures the inverse distance of any point z 2 X to
x. In the case of time series we can base ⇡x on the l2 norm, i.e. ⇡x(z) = exp (�l

2(z � x)).
In the standard LIME implementation [44], the problem (18) can be solved with either
L1 regularizartion (Lasso) or L2 regularization (Ridge) based on the scikit-learn package
[46]. The objective function in (18) has to be changed according to the method used. In

R

x

f(x)

f(X)

X

-1

R

x'

f(x)

X'

g(X')

Figure 9: Idea behind LIME

Figure 9 the intuitive explanation of how we interpret the output of LIME, which are the
weights of the linear model g, can be observed. The model g is the best approximation to
f in a neighbourhood of our sample x

0 in the surrogate space X
0. If now a feature in the

surrogate space, which corresponds to a segment of data in the original instance x, has
a high weight, that means if we move in the direction of the axis corresponding to this
weight, g changes a lot, and therefore also f . This means that feature has a high impact
on the predictions f makes in this neighbourhood. If on the other hand a feature has a
low weight, that means a change of this feature has a low impact on f . Mind here that
X

0 = {0, 1}d, which means the original values of the data points in X, that correspond
to the feature play no direct role in the surrogate space.

4.3 Predicting and interpreting an Inventory Simulation

In order to test if the LIME algorithm works as intended also for time series data, we
created an inventory simulation that follows simple arithmetic rules. Our simulation
models the time dependent development of an inventory of one item. The inventory
belongs to a seller, who decides based on the state of all model variables, when and how
much he restocks his inventory. Such a restocking we call shipment creation and after a
certain lead time, the shipments arrive as inbound in the warehouse. The premise of our
simulation is that a seller will create a new shipment whenever his inventory falls below
a certain dynamical threshold. The quantity of shipments he creates is then calculated
based on a formula based on the economic order quantity [39].
We then trained a random forest with 1000 estimators to predict the shipment creation
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quantity of the next time step. As input features we gave the model the current demand
of items, the shipment creation quantity, shipments in transit and inbound, as well as the
historic data of inventory position of the past 20 time steps. As instance x to explain we

negative positive
transit <= 0.00

155.73

inventory > 155.00
67.42

40.00 < demand <= ...
23.04

73.00 < inventory - 1 ...
5.41

Feature Value
transit 0.00
inventory 159.00
demand 50.00
inventory - 183.00

g(0)  = 46.849134131694896
g(x') = 152.79388267
f(x)  =  258.913
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Figure 10: Interpreting a random forest prediction

pick the 9-th time step of the test as, as depicted in Figure 10 on the right. The actual
shipments created at this time are 284, and the random forest predicted f(x) = 258.913.
We then applied the ”LIME for Tabular Data” approach from [44] to this prediction.
Note that in this implementation of LIME there is no feature aggregation done, as it is
intended for low dimensional tabular data. Therefore a LIME weight is assigned to each
feature individually, instead of for example to windows in a time series. The results are
displayed in Figure 10. As length of explanation we choose K = 4. In the table are
displayed the feature and the value it attains in our instance x. In the bar plot on the
left we see the rounded value of the weights each of the 4 features got. In other words the
linear model is

g : {0, 1}4 ! R
z
0 7! 155.73 · z0

1 � 67.42 · z0

2 + 23.04 · z0

3 � 5.41 · z0

4 + 46.85

and we have

g(x0) = g([1 1 1 1]) = 155.73 · 1� 67.42 · 1 + 23.041� 5.41 · 1 + 46.85

= 152.79.

We see that according to LIME the 3 most important features are current transit, inven-
tory and demand. This aligns fully with our simulation as in our algorithm the shipment
creation quantity in the next time step, as well as if a shipments is created at all, will
depend solely on the quantity of these variables at the next time step. The past inventory
position, that we gave our model as additional features, play no role in the simulation, and
LIME correctly attributes no importance to them. But not only the absolute values of
weights, also their signs align with the simulation. A low number of shipments in transit
leads to a higher number of shipments created, and a high inventory position leads to a
low number of shipments created. In our instance x there are 0 shipments in transit, and
the inventory is 159, which is high. Additionally the demand is high, which also increases
the number of shipments created.
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4.4 Adapting LIME to Multihorizon Timeseries Forecasting

In order to apply LIME and thus provide explanations for our quantile forecasting models,
several questions had to be answered. One task to overcome was, that in the standard
LIME algorithm the ML model f : X ! R maps only to the real numbers, but our time
series forecasting models all are of the form f : X ! Rn1⇥n2 , where n1 is the forecast
horizon and n2 is the number of quantiles. We solved this by fixing the timestep t and

Pytorch Forecasting
Dataloader

1d NumPy array

Data 1 (flat) Data 2 (flat) Data 2 (flat)

3d Torch Tensor
2d NumPy array

Data 1 (flat) Data 2 (flat) Data 2 (flat)

Data 1 (pert.) Data 2 (pert.) Data 2 (pert.)

Data 1 (pert.) Data 2 (pet.) Data 2 (pert.)

... ... ...

ts_past categorical known_future

Data 1
Data 2 Data 3

ts_past categorical known_future

Data 1
Data 2 Data 3

Lime Regression
Explanation

Lime Pertubation
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Figure 11: Data processing pipeline for LIME with PyTorch Models

quantile q and analyzing only the t, q-th output of our model at once. More precicely, let

h : Rn1⇥n2 ! R,
(ai,j)i=1,··· ,n1

j=1,··· ,n2

7! at,q.

The model we give to LIME is then f̃ := h � f , which maps into the real numbers, as
needed.

As a first proof of concept, we decided to adopt the ”Lime for Tabular Data” approach
from [44], where each data point in our time series gets assigned a LIME weight and there
is no feature aggregation done. Our models get their data in batches from the PyTorch
dataloader. The data is stored in Python dictionary form, and we designed the data
processing pipeline to do the transformations necessary for LIME, as seen in Figure 11.
Our experiments showed, however, that too many feature in the ”LIME for Tabular Data”
approach lead to poor explainability results. Therefore we deem it necessary that our
code is extended to incorporate feature aggregation similar to the window segmentation
depicted in Figure 8, since this reduction in dimensionality is one of the big strengths of
LIME.
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5 Conclusion

During the TUM Data Innovation Lab at Amazon, we developed a modular and extend-
able framework to experiment and benchmark probabilistic time series forecasting models.
We developed a new state-of-the-art modelMQCopulaTransformer, which is especially
suited for business applications since it is generative, provides consistent quantile forecasts
and allows to create cross-series and cross-time correlation matrices.

We conducted theoretical research into ways to further reduce uncertainty via physics or

economic guided machine learning and present a general framework to incorporate
prior knowledge into training by only having to adapt the loss function.

In the same spirit, we adapted the XAI technique LIME to the new context of mul-
tivariate time series forecasting, which is especially applicable in the business context of
earning trust with non-technical stakeholders who will use the models in practice. We
provide the baseline for future LIME application in this new, multi horizon, multi time-
series forecasting setting and identified relevant next steps for future research, namely
being investigation into feature aggregation strategies.

With our work, we set the foundation for further theoretical research and empirical anal-
ysis of uncertainty quantification in a supply chain context at Amazon. Our package
will be used and extended by Amazon Scientists to conduct further experiments and our
research serves as a basis for future experiments and further theoretical research.
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