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Mentors Aurélien Ouattara, Florian Felice, Liubomyr Bregman
Amazon

Co-mentor M.Sc Özge Sahin (Department of Mathematics)
Project Lead Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor Prof. Dr. Massimo Fornasier (Department of Mathematics)

Jul 2020



Contents

1 Introduction 2

2 Selected Technologies 3
2.1 Big data tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Existing packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Introduction to clogit package in R . . . . . . . . . . . . . . . . . . 4
2.2.2 Inside R survival package . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Data Exploration and Methodology Overview 5
3.1 Data overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Selected algorithms and methodology . . . . . . . . . . . . . . . . . . . . . 6

4 Fitting our Model with Pooled Regressions 7
4.1 Specification of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Average partial effect and partial effect at mean . . . . . . . . . . . . . . . 8
4.3 Pooled logistic and probit regressions as a neural network . . . . . . . . . . 9
4.4 Statistical summary for Pooled Regression in TensorFlow . . . . . . . . . . 11

4.4.1 Mathematical details . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5 Beyond logit and probit using automatic differentiation . . . . . . . . . . . 14

5 Fixed Effects Models 15
5.1 Model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Unconditional likelihood method . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 Computing the estimator . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Incidental parameters problem . . . . . . . . . . . . . . . . . . . . . 18

5.3 Conditional likelihood method . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1 Computing the estimator . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.2 Approximating the log likelihood . . . . . . . . . . . . . . . . . . . 21

5.4 Average partial effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Distributed computation to model Fixed Effects Logit . . . . . . . . . . . . 23

6 Results and Conclusion 24

References 26



1 INTRODUCTION 2

1 Introduction

In the era of ”big data”, the decision-making process for businesses has taken a different
form and involves new approaches. The numbers are now considered to ”speak for them-
selves”, and strategic actions are more often taken and rationalized by data. Statistics
has become a crucial tool for business owners to make informed decisions, draw valid con-
clusions, and act based on them. In the context of a lack of knowledge and certainty for
a particular problem, utilizing big data can substantially reduce the level of uncertainty.

Recently, there has been a significant burst in the speed at which software tools are cre-
ated. These are targeted to help many institutions to operate better and develop more
automated ways of tackling business problems (Apache Spark, 2014 [31], TensorFlow,
2015 [1], PyTorch, 2016 [25]). These technologies are mostly designed for solving machine
learning problems and are therefore particularly suited and well-optimized to perform
predictive modeling. However, despite this large amount of data at our disposal and
the increasing number of tools dedicated to handling large datasets, performing explana-
tory statistical analysis using big data volume is still an open problem in the econometrics
and statistics community, due to the complexity of computation and scalability issues [10].

The issues of classical econometrics studies lie in a lack of unified tools that perform well
both on modeling and retrieving statistical inference with extra-large datasets. Specifi-
cally, the tools used within Amazon Operations provide quick access to such data. Al-
though those existing technologies are suited for operating on big data and producing
predictive models [1], they lack statistics-specific outputs and are therefore not optimized
for econometric evaluations. On the other hand, the performance of established solutions
for econometrics such as R, SPSS, SAS run solely on in-memory data and do not exploit
parallelism within their language primitives [10]. Therefore, these are often no longer
efficient on large datasets.

One of our primary goals in this project is to utilize existing big data technologies thor-
oughly and to extend their APIs by developing econometric tools that will perform effi-
ciently at scale and allow for causality inference.

The context of our project is a specific business problem, where we investigate a marginal
effect of a particular independent variable X on a binary response Y, controlling for a set of
independent variables Z. We support our analysis using a highly-imbalanced (80%− 20%
distribution in the response) dataset with more than 500 million observations and ap-
proximately 40 features. We work with panel data, which involves repeated observations
on the same units over time.

There are many ways to tackle the aforementioned business problem. Our objective is to
find the best specified and most efficient model. Our first approach is to disregard the
differences in observations over time and to fit pooled logistic and probit regressions. How-
ever, fitting such models and especially causal inference gets challenging for extra-large
datasets. Hence, we develop a novel way to efficiently compute the Fisher information over
large datasets in a distributed way, using multiple graphics processing units (GPUs) with
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TensorFlow. Even though this approach can alleviate the scalability issue and produce
the estimates, these do not capture important unobserved group characteristics. There-
fore, our exploration leads us to develop unobserved effects models for logistic regression,
using conditional and unconditional maximum likelihood estimations. Those approaches
make it possible to account for group-specific heterogeneity in the panel data. For all the
frameworks mentioned above, we compute inference statistics, average partial effects, and
resolve the question with TensorFlow and Apache Spark.

We start by introducing an overview of the existing relevant big data technologies along
with packages in R. Chapter 3 provides details on the dataset and reasoning behind the
methodology choice. Chapters 4 and 5 present the models’ setup and further details on the
developed functionalities for pooled regression and fixed-effects logit, respectively. Since
we use real data collected by Amazon, we disclose only general information regarding the
features and also change their naming conventions in all corresponding parts of the report.

2 Selected Technologies

When dealing with extra-large datasets, it is crucial to give a great deal of attention
to performance and scalability. Since our problem is to create a robust and scalable
statistical package for causal inference, we decide to implement it with TensorFlow and
Apache Spark. In this section, we provide an overview of existing relevant big data
technologies along with statistical packages in R, which are widely used for our purposes
in econometrics.

2.1 Big data tools

TensorFlow is an open-source machine learning platform, initially developed by Google for
large numerical computations and extensively used for deep learning applications. Cal-
culations are represented in the form of computational graphs, where each node denotes
an operation, and each edge indicates a multidimensional array (tensor) or a control de-
pendency between two nodes. Once the graph is created, the execution can be seamlessly
distributed across several GPUs [1].

Keras is a user-friendly modular high-level API within TensorFlow for building and train-
ing neural networks. We use it to model pooled logistic and probit regressions as a
single-layer neural network with corresponding activation functions as shown in Figure 2
and is discussed in the subsequent question. TensorFlow also supplies an API for building
efficient input data pipelines for handling, reading, and performing complex transforma-
tions over large amounts of data. As it is practically impossible to fit our extra-large
dataset in RAM, we utilize this functionality to parallelize the data loading, preprocess-
ing, and fitting in a batched manner across multiple central processing units (CPUs).

It is worth noticing that all the parts of the project related to TensorFlow are being
performed on an ml.p2.8xlarge instance on Amazon SageMaker with 32 virtual CPUs
(memory: 488 GiB) and 8 Tesla K80 GPUs (memory: 96 GPU Mem (GiB)). Amazon

https://www.tensorflow.org/guide/data
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SageMaker is a cloud platform that allows for building, training, and deploying machine
learning models within instance-based notebooks.

Apache Spark is a distributed general-purpose cluster-computing tool that offers multi-
ple, high and low-level, easy to use API-s, that conveniently encapsulate dealing with
distributed computing and big data processing. Apache Spark’s API, which is supported
in many popular languages used for machine learning (Python, Scala, R..), is a flexible
tool for leveraging computation capabilities of many computer clusters. The main feature
of Apache Spark is operating in-memory, which ensures efficient computation. Therefore,
a significant aspect of performance in Apache Spark applications is driven by the available
main memory on the machine that the code is executed on. In our setting, the types of
machines we use for performing a task are configurable, which allows us to be in control
of runtime speed, as well as the cost of the execution.

2.2 Existing packages

Before implementing the solutions in our selected tools, i.e., Apache Spark and Tensor-
Flow, we, firstly, review the available packages in classical statistical software. We choose
the open-source and platform-independent software, “R”, one of the most prominent pro-
gramming languages in statistics and econometrics, which provides free statistical software
environments [11]. For our analysis, we use several of those as a reference to benchmark
our implementations across different frameworks.

One of the earliest implementations of generalized linear models without regularization
is available in the “stats” library under glm() function. Since it allows for arbitrary link
function that relates the mean of the dependent variable to the predictors, we utilize
glm() to benchmark both logit and probit models. We investigate its performance on
small datasets and compare the outputs with our solution in TensorFlow. As this library
is not optimized for estimating the models on extra-large datasets, it makes it infeasible
to benchmark on those.

In order to account for unobserved individual characteristics with our panel data, we
develop unobserved effects methodologies. Before implementing our own package for
unobserved effects, we explore the existing implementations that solve logistic regression
with unobserved effects, to review and benchmark the computational challenges that we
should address in our solution. There are two main packages that implement fixed effects
in R. One is a survival package with function clogit, which maximizes the conditional
likelihood. Another one is glmmML or bife, which, in contrast, uses an unconditional
approach. We dive deeply into implementation and methodologies inside clogit and bife.
Let us take a deeper look at “clogit package” and the related “survival” package.

2.2.1 Introduction to clogit package in R

clogit fits a regression model that has different names in various fields. In biostatistics and
epidemiology, it is referred to as conditional logistic regression for matched case-control

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/survival/versions/3.1-12/topics/clogit
https://www.rdocumentation.org/packages/glmmML/versions/1.1.0/topics/glmmboot
https://www.rdocumentation.org/packages/bife/versions/0.5/topics/bife
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groups, while in economics and other social studies, it is often referred to as a fixed-effects
logit for panel data. It estimates the model by maximizing the exact conditional likeli-
hood and also supports some approximation of the likelihood function.

Technically, the log likelihood for a conditional logistic regression model is equivalent to
log likelihood from a Cox model with a particular data structure. In detail, a stratified
Cox model with each case/control group assigned to its own stratum, time set to a con-
stant, status of 1=case 0=control, and using the exact partial likelihood has the same
likelihood formula as a conditional logistic regression. This is why an object of class
”clogit” is just a wrapper for a ”coxph” object. The conditional logistic regression model
is available in coxph through the ties=’exact’ option.

It is worth mentioning that the odds ratios for events are calculated using the same
partial likelihood from the Cox Model. Using predictions from the estimated odds ratios,
the ranking is updated to account for what is now known about these matched sets’
risk due to unmeasured factors (since our updated predictions take better account of the
measured risk factors using odds ratios). This process iterates until there is an agreement
(or convergence) using an expectation maximization framework. This is why clogit takes
so much longer to converge than a simple Cox Model.

2.2.2 Inside R survival package

The function of interest, coxph, belongs to survival package in R with source code here.
The main function coxph.R calls the wrapper (interface) coxph.fit.R, which serves as an
indicator for fitting the model approximately. On the other hand, inside the coxph.R, a
wrapper function coxeact.fit is called as an indicator for fitting the model exactly. Inside
of both wrapping functions, a .Call() function call is initiated, calling a function in source
code written in C and compiles via R CMD SHLI, creating a dll to be loaded into R.
Coxfit6.c and coxecact.c are the ones that actually do the work. Specifically, for updating
the parameter β, it uses the Newton method. For inverting the information matrix, it ex-
ploits the symmetry of information matrix by Cholesky decomposition and calls chsolve2
to solve linear equations, Ax = y and replace y with x.

The good news in terms of computational efficiency is that the survival package allows
for an exact likelihood computation or a Breslow or Efron approximation. The Breslow
approximation used to be the default for most software programs, because of computa-
tional simplicity. But it is no longer the case in R.The Efron approximation is the default
in R coxph().

3 Data Exploration and Methodology Overview

Having introduced the technologies that support our analysis, in the succeeding subsec-
tions we provide essential characteristics of the dataset along with the reasoning behind
the choice of the models.

https://github.com/cran/survival/tree/master/R
https://github.com/cran/survival/blob/master/R/coxph.R
https://github.com/cran/survival/blob/master/R/coxph.fit.R
https://github.com/cran/survival/blob/master/R/coxexact.fit.R
https://github.com/cran/survival/blob/master/src/coxfit6.c
https://github.com/cran/survival/blob/master/src/coxexact.c
https://github.com/cran/survival/blob/master/src/chsolve2.c
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3.1 Data overview

As in any data science project, our project heavily relies on data preprocessing, such as
data cleaning and outlier detection. This process requires learning about the business do-
main we are operating in as well as the necessary terminology to interpret the given data
points. Afterwards, we begin a process of removing constant variables, plotting the out-
lier distributions, and cleaning the missing values, which mostly involves equating them
to zero. Preparing the data to be analyzed also involves transforming the data format
to be ”wide”, i.e., encoding the categorical variables to be represented as dummy binary
variables.

The dataset consists of around 40 features and more than n = 108 observations. No-
tably, we find that the data is highly imbalanced, with about 85% of the dependent
variables equal to zero. Furthermore, we observe that approximately 30 of our indepen-
dent variables are categorical, which implies high sparsity of the data.

We also conduct additional high-level descriptive analyses to improve our understand-
ing of business context and relationships between features and the dependent variable.

3.2 Selected algorithms and methodology

Before diving into the algorithms for our analysis, it is important to acknowledge the
type of dataset we are dealing with. The data is cross-sectional (involving many subjects
at any point in time) and multi-dimensional, meaning it involves multiple measurements
for each subject over time. This type of data provides a benefit of capturing behavioral
changes over time, however, this comes with the cost of added complexity during the
training.

In a practical scenario, it is intractable to measure all of the variables that have a causal
impact on the dependent variable. Some variables are hard and expensive to measure
or represent specific individual characteristics that are impossible to quantify. These are
known as ”unobserved effects”, and there are two ways to categorize them.

Unobserved effects are characteristic of the group or individual and they do not change
over time. There are two types of unobserved effects: fixed effect αi and ”random” effects.
The difference between fixed and random effect is that the latter poses one additional as-
sumption that αi is uncorrelated with Xit. In the traditional approach to panel data
models, an effect is called a ”random” when it is treated as a random variable and ”fixed
effect” when it is treated as a parameter to be estimated for each cross section observation
[30].
When researching panel data, there are two ways to design the analyzing process. The first
one is ”between estimation”, in which we compare the outcome of a group to the outcome
of another one. The second one is ”within estimation”, where we follow the change of the
outcome, when the same group is changed from the control to the treatment condition.
For causal inference, within estimation offers a better analysis, since oftentimes the as-
sumption of unit homogeneity does not hold.
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We decide to explore three methods when evaluating causal impact. Firstly, pooled logistic
and probit regressions and, secondly, logistic regression with fixed effects.
The dataset is not only complex in its structure, but as aforementioned, its volume also
poses a challenge. In order to to analyze it entirely, the statistical packages used should
be optimized for large scale computation and run in a distributed manner.

4 Fitting our Model with Pooled Regressions

4.1 Specification of the models

In our project, we evaluate the marginal impact of an independent variable of interest
X on a binary outcome Y and assuming independence and identical distribution of all
observations. In the following sections, we compare the different modeling approaches we
use.

Our first approach is to estimate the impact by discarding any potential unobserved
heterogeneity and applying the pooled logistic regression:

P(yit = 1|xit,β) = σ(xTitβ + β0)

where σ is the cumulative distribution function (CDF) of a standard logistic distribution,
also known as a sigmoid function.

Another way to model a binary dependent variable is given by a probit approach, which
specifies the conditional probability of success given the predictors X in the following
way:

P(yit = 1|xit,β) = Φ(xTitβ + β0)

where Φ defines the CDF of a standard normal distribution. Similar to a logistic regres-
sion, this can be interpreted as modeling a real valued continuous latent variable Z with
the Gaussian noise, which sign determines the dependent variable Y . More precisely, for
a probit model we suppose that:

Z = XTβ + β0 + ε and Y =

{
1 for Z > 0

0 for Z ≤ 0
with ε ∼ N (0, 1)

In general, logit and probit models tend to deliver very similar results in terms of estimated
coefficents and partial effects in the vast majority of cases. They only are statistically
distinguishable for an extremely high number of observations [9] or if many observation are
located in the tails [3]. In fact, the estimated coefficients of both approaches can be used
to approximate each other. From a theoretical perspective, scaling a probit estimate by
π/
√

3 ≈ 1.81 should approximately yield the respective estimators of the logistic regression
parameters since this would correct for the higher variance of the logistic distribution [2]
- although empirical results imply that using a factor of 1.6 tends to be more accurate [3].
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Overall a probit model is particularly reasonable if the latent variable can be expected to
follow a distribution with approximately subgaussian tails whereas logistic regression is a
better choice for heavier tails.

4.2 Average partial effect and partial effect at mean

In order to assess the causal inference and marginal impact of a change in a variable X on
the binary response Y as well as to compare the different methods we use, we calculate
average partial effects (APEs) and partial effects (PEs) at mean for all covariates. The
APEs are estimated as the average of the individual marginal effects and the PEs at mean
are computed for an average observation x̄ in the data. For logit and probit models, the
corresponding calculations for continuous values are performed as follows:

APEj = βj

∑
f(xTβ)

N
PEatMeanj = βjf(x̄Tβ)

where βj is jth element of interest of vector β (or a jth independent variable), N is the
number of observations, f is a probability density function (PDF) of standard logistic
distribution f(x) = e−x

(1+e−x)2
in the case of logit and the PDF of standard normal for

probit regression.

The partial effects for a discrete independent variable for both regressions are calculated
as follows:

PEdiscretej = F (β0 + x1tβ1 + βj(k + 1))− F (β0 + x1tβ1 + βj(k))

where F is a corresponding CDF and k expresses a comparison to the base category, e.g.
0 for dummy variables. Example of performed calculations for pooled logistic regression
is displayed in the Figure 1.

Figure 1: Partial Effects for Pooled Logistic and Probit Regressions.

Although the two approaches produce almost identical results, the main difference lies
in the calculation methodology. The PEs are estimated for the average observation in
the sample, however, there might not be in reality a person, company, etc. with such
characteristics in data. Therefore, in practice, the calculation of the APEs is a better
approach to estimate partial effects. On the other hand, the calculation of the PEs is
computationally much faster, as the main overhead only lies in retrieving the mean values
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for each data column. Using cloud-based data warehouses and query services, such as
Amazon Redshift and Amazon Athena, this can be easily done for extra-large datasets
at substantially low costs. Therefore, PEs can always be an efficient alternative for the
quick estimation of the partial effects.

For completeness, it is worth noting that in the case of linear regression, both methods
yield equivalent results due to the linear relationship between the independent variables
and response.

4.3 Pooled logistic and probit regressions as a neural network

Our approach for estimating pooled logistic and probit regressions in distributed manner
in TensorFlow is to model them as a single-neuron neural networks, where the activation
function is a CDF of a standard logistic or normal distributions (Figure 2).

Figure 2: Logistic and Probit Regressions as a Neural Network.

To implement the probit case we use the CDF included in the TensorFlow probability
API and define it as a customized activation function for the Keras model layer. As a
first step and to fully utilize existing TensorFlow capabilities we are fitting the model
using mini-batch gradient descent methods based on the first order approximation of the
likelihood function.

This is a fundamental difference compared to the standard Fisher Scoring procedure,
which is used by R and many other statistical software packages to fit generalized linear
models. Such methods approximate the likelihood function by the second order Taylor
series expansion and require the full batch update. Although the classical second order
algorithms are well-known for their significantly faster convergence, they imply saving the
whole data in memory, which is computationally infeasible when it comes to the size of
our problem. This, together with very expensive data access, is one of the main reasons
behind opting for the first order optimization algorithms when modeling pooled logit and
probit as neural networks.

One of the mini-batch gradient-based methods we use is a stochastic gradient descent
(SGD). Given a large train set with n training samples {xi, yi} and a loss function
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L = 1
n

∑n
i=1 Li(β, xi, yi), we search for the best model parameters β = argmin(L). From

the trainset we choose a subset (minibatch) Bi = {{x1, y1}, {x2, y2}, .., {xm, ym}} where
m << n. The single update step for multiple samples is defined as follows:
β(k+1) = β(k) − α∇βL(β(k), x{1..m}, y{1..m}), with ∇βL = 1

m

∑m
i=1∇βLi being a gradient

for the k-th mini-batch, m is the number of observations in the current mini-batch, k
refers to k-th iteration, and α is the step size, also known as learning rate. Starting
trainable parameters β(0) can be initialized with a Xavier initialization [17]. As we solve
a binary model, we want to minimize a strictly convex cross-entropy cost function, which
is mathematically equivalent to maximizing the likelihood function. Therefore, the strict
convexity together with ∇βL being an unbiased estimate of the function being minimized,
and non-negativity of the update parameters α ensure convergence to the global minimum.

This method imposes additional issues and constraints to the optimization process. At
first, the saturating nature of the sigmoid and standard normal CDFs causes the opti-
mization to be very sensitive to feature scaling. More precisely, if the linear combination
of the features inside the activation function becomes too high in absolute value, the re-
spective gradient will be very close to zero causing ineffective parameter updates. Thus,
it is crucial to scale the feature in order to ensure consistently non zero gradients suitable
for training. Since scaling the variables also impacts their estimated coefficients and av-
erage partial effects of all other features, appropriate re-scaling is necessary to evaluate
the true effects in units of the real data. Other issues can arise from the incorrect weight
initialization and wrong setting of hyperparameters such as learning rate or additional
parameters introduced by more sophisticated variations of stochastic gradient descent,
like Adam [23] or AdaGrad [12].

We estimate our model in TensorFlow by following three steps. At first, a model object
needs to be created, where the exact model specification is chosen, e.g. ’logit’ or ’probit’.
At this stage, further customization is possible, see chapter 4.5 for details. The next
step is to compile the model including all available keyword arguments of the original
Keras functionality like optimizer selection or callback settings. Finally, model fitting is
initialized by calling the fit method. Again all keyword arguments of the respective Keras
functionality are preserved here. A code snippet exemplifying these steps is displayed
in Figure 3. As an additional feature we also allow to specify the floating point repre-

Figure 3: Code snippet for creating and fitting a pooled regression model.

sentation to be used when compiling the model. By default, Keras models are based on
float32 in order to fit higher amounts of data into memory at the cost of lower numerical
resolution compared to float64, which is the default representation in numpy. However,
a higher numerical precision can be beneficial for the task of statistical inference on very
large datasets. Many statistical quantities of interest, like goodness of fit characteristics
or p-values, require to condense information of the entire dataset into a single mean-
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ingful number. If the underlying dataset is very large, rounding errors resulting from a
huge amount of individual floating point operation are accumulated which could cause
imprecise final results. Such issues can easily be mitigated, by choosing a floating point
representations with higher numerical precision. But since this also slows down training
speed and doubles memory requirements, we allow the user to choose between float32 and
float64 by himself based on his individual use case.

TensorFlow also started to support additional numerical representations relying on float16
which could speed up computations considerably [22]. But since this also further limits
the numerical precision of all results, this is not recommended for conducting statistical
inference at scale.

4.4 Statistical summary for Pooled Regression in TensorFlow

As one of our main achievements, we extend the existing Tensorflow capabilites by pro-
viding also a statistical summary of the estimated model to further evaluate the results
and allowing causal inference. To get such a summary, the user can simply call the
get statistical summary method of a fitted model as shown in Figure 4.

Figure 4: Code snippet for getting the statistical summary.

The method further allows the user to specify the desired level of confidence for the
computed confidence intervals. Furthermore, we offer the possibility to estimate robust
sandwich errors, also known as Eicker-Huber-White standard errors [15][21][28], to cor-
rect for potential heteroskedasticity, as implemented in [32]. Running this method will
compute the statistical summary and yield an output like in Figure 10:

Figure 5: Statistical summary for pooled regression in TensorFlow.

The summary includes statistical properties of the model such as different goodness of
fit characteristics (deviance, null deviance, p-value of a likelihood ratio test, McFadden
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pseudo R2’s) and information criteria (Akaike and Bayesian). These quantities allow the
user to asses how well a model describes the data and to compare different models in
this regard. We also displays all coefficients with their respective standard errors and
p-values, which are needed to conduct causal inference. All information are also saved
as an attribute of the model object and thus can be easily accessed for potential further
usage.

4.4.1 Mathematical details

From a mathematical perspective, all goodness of fit characteristics rely on the value of
the log likelihood at the estimated coefficients and can be computed using their respective
formula. Let n ∈ N be the number of observations, LM be the likelihood of the fitted
model with p parameters, LS be the likelihood of the saturated model yielding perfect
prediction and L0 be the likelihood of the null model constantly predicting ȳ = 1

n

∑N
i=1 yi.

Note that for the Bernoulli likelihood function used in case of binary response variables,
LS = 1 holds.

Deviance = −2(logLM − logLS) = −2(logLM)

Nulldeviance = −2(logL0 − logLS) = −2(logL0)

LR-test statistic: LR = −2 log

(
LM
L0

)
= −2(logLM − logL0) where LR ∼ χ2(p)

R2
McFadden = 1− logLM

logL0

R2
McFadden,adj = 1− logLM − p

logL0

Akaike Information Criteria: AIC = 2p− 2 logLM

Bayesian Information Criteria: BIC = p log n− 2 logLM

In order to get standard errors of the model coefficients β ∈ Rp we need to compute the
covariance matrix at the maximum likelihood estimate β̂ML, which is the inverse of the
Fisher information matrix I(β̂ML). Let `(β) be the log likelihood function depending on
β and ∂

∂β
`(β) be its gradient. Due to the concavity of the Bernoulli log likelihood and the

existence of an optimum, we know that at β̂ML it holds ∂
∂β
`(β̂ML) = 0. Thus:

I(β̂ML) = V ar

[
∂

∂β
`(β̂ML)

]
= E

[
∂

∂β
`(β̂ML)

∂

∂β
`(β̂ML)T

]
= −E

[
∂2

∂β∂β
`(β̂ML)

]
Here, the last equality follows under certain regularity conditions which are satisfied in
our model specifications, see [7] section 5.6.3 for details. Therefore, the Fisher informa-
tion equals the negative expected Hessian matrix. With true coefficient vector β∗ it holds
asymptotically, that β̂ML ∼ N (β∗, I(β∗)−1) and standard errors can be computed by tak-
ing the square root of the diagonal entries of the covariance matrix I(β̂ML)−1.

In case of logistic regression on observations {xi ∈ Rp}ni=1 we get the following expression
for the fisher information:

Ilogit(β) =
n∑
i=1

exp(βTxi)

(1 + exp(βTxi))2
xix

T
i
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For the respective probit regression we get with standard normal cdf Φ and density φ:

Iprobit(β) =
n∑
i=1

φ(βTxi)
2

Φ(βTxi)(1− Φ(βTxi))
xix

T
i

4.4.2 Computational details

The computation of a statistical model summary like presented above requires to read
and process the entire dataset. In order to do this at scale, ensuring that it works for
extra-large out-of-memory datasets, we compute all necessary quantities in a batchwise
fashion and reduce all partial results in the end to receive the final result. With Tensor-
Flow, we can accelerate these partial computations by executing them on a GPU or even
distribute them across multiple GPUs if available.

Since reading batches of data from disk is rather slow, we utilize the TensorFlow Dataset
API to already prefetch the next batch to main memory while GPUs are processing the
current batch. All quantities of interest rely on the log likelihood itself or its Hessian
matrix evaluated at the maximum likelihood estimate. Since both expressions are alge-
braically already formulated as sum over each individual element of the dataset, batching
and distributing is straightforward. The calculation of the Hessian matrix H(β) of the
estimated coefficients β is visualized in Figure 6, where `i(β) describes the value of the log
likelihood function of data point i over batches B1, B2... Note that all partial results are
stored in main memory to account for in general more restrictive GPU memory constrains
and reduced to the final result on the CPU.

Figure 6: Distributed Hessian computation on multiple GPUs

Since we utilize CPUs and GPUs simultaneously to perform computations, it is worth
mentioning that the results retrieved from both kinds of devices cannot be expected to
be exactly identical in general [29]. The root cause for this can also be attributed to
rounding errors in floating point arithmetic and thus is also alleviated by using float64.
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4.5 Beyond logit and probit using automatic differentiation

Computing standard errors of parameters requires to evaluate the Hessian matrix of log
likelihood function at the maximum likelihood estimate. For this reason and in line with
traditional statistical software, we have to individually derive the exact analytic expres-
sions of Hessian matrix for a logit and a probit model to be used in the code.

The main drawback of this approach is that each new model specification, like a link
function other than logit or probit, would need additional mathematical considerations
as well as time consuming extra coding effort. For example, customizing a link function
with the glm package in R requires the user to specify and implement not only the link
itself, but also three supplementary functions1. This is quite cumbersome, considering
that the logic of the computation is exactly the same for different links.

We develop simple way to generalize our scalable code basis for an arbitrary link functions
by calculating the specific Hessian matrix automatically without extra code using Tensor-
Flow’s automatic differentiation feature. Automatic Differentiation [4] is an algorithmic
technique that enables the calculation of exact partial derivatives in a numerically stable
and efficient way and is therefore the state of the art procedure to perform this task in
modern machine learning [5]. Before execution, TensorFlow translates the underlying code
into a computational graph where each node represents a basic mathematical operation.
For each of these basic operations available, TensorFlow also knows the exact expression
of the partial derivatives with respect to different input values. Thus, overall derivatives
can be simply computed with a forward pass through the graph storing all partial results
at the nodes followed by a backwards pass applying the chain rule of differentiation. This
procedure is exemplified in Figure 7.

Figure 7: Example of automatic differentiation

Leveraging automatic differentiation enables us to fit and compute the summary of mod-
els based on arbitrary link functions with very few extra lines of code offering maximum
flexibility and complete scalability to the user. Figure 8 shows how to create a scalable
binary regression model using the cloglog link function, which needs to be first imple-
mented and then referred to in the model constructor. In fact, this idea can be further
used to also fit and evaluate entirely different model specifications like other variants of

1for details see: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/make.link.html

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/make.link.html
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generalized linear models by additionally specifying the respective negative log likelihood
function. As an example, the code needed for simple Poisson regression is depicted in
Figure 9.

Figure 8: Code for implementing a cloglog model

Figure 9: Code for implementing a poisson model

Offering such amount of flexibility however, comes with costs. At first, computing the
Hessian matrix automatically instead of using the analytic expression will take usually
more time. Secondly, although automatic differentiation is in general numerically stable,
additional instabilities could arise from the mathematical form of the used link or log
likelihood functions. To mitigate such issues, feature scaling, clipping specific values and
adding small epsilon values at critical computation steps can be applied to remain in a
numerically stable range. In case of the cloglog link for binary regression model with cross
entropy log likelihood structure, such instabilities could occur for predicted probabilities
that are too close to one or zero. To avoid this, scaling the features to be in the range
of -1 and 1 as well as clipping the output of the link function performs very effectively
in our simulations. For the Poisson log likelihood, we add a small term inside the logs to
avoid the singularity at zero.

Note that in this setting, standard errors are computed using the observed information
J (β) = − ∂2

∂β∂β
`(β) rather than using the Fisher information matrix I(β) = E [J (β)].

Both methods are used in different available software packages and evidence suggests, that
the observed information might even be a better estimate of the asymptotic covariance
[14].

5 Fixed Effects Models

Since we are dealing with panel data, we have multiple observations for each entity.
Instead of just pooling data we can use this data structure to infer the unobserved effect
of each observed entity and control for it. Here “fixed effects” (unit specific intercepts) is
used to account for unmodeled heterogeneity in grouped data analyses. In this section,
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we present the fixed effect logit model for dealing with unobserved effects in panel data.
This is a modification of the standard logit model where a constant unobserved effect is
added to each group of observations. It is a well known model in econometrics that can
be used to model a binary response in cases where we observe the same entity (person,
corporation, country...) at multiple times and we want to control for characteristics of
this entity that are unobserved or when the entities we are observing can be divided into
groups and we want to control for effects of being in this group on our response. We begin
by introducing the mathematical setup of the model.

5.1 Model setup

We start by introducing the notation we use to describe our dataset. The number of
groups in our dataset are labeled as I ∈ N and the number of observations in each group
as T ∈ NI . T will denote the average group size. 1

I

∑I
i=1 Ti. Each observation contains

R ∈ N covariate features. Our observed features are given as x = (x1, x2, ..xI) where
∀i ≤ I xi ∈ RTi×R contains of observations for one group. We also have a response
dataset y = (y1, y2, ..yI) where ∀i ≤ I yi ∈ RTi and ∀t ≤ Ti yit is the observed response
corresponding to the feature vector xit.

We treat y as a draw from an I-dimensional vector Y = (Y1, Y2, . . . YI) where each Yi is
a Ti-dimensional random vector. We are assuming that the distribution of each response
variable Yit can be modelled as a Bernoulli distribution where the probability of success
is given as a sum of a linear combination of features and the group fixed effects plugged
into the logistic function. Assuming that β ∈ RR is the vector of coefficients in the lin-
ear combination and α ∈ RI is the vector of fixed effects for each group, we say that
P(Yit = 1 | β, αi, xit) = σ(αi + xitβ), where σ is the logistic (sigmoid) function given by
σ(x) = ex

1+ex
. Note that the only difference between this model and well-known logistic

model is the inclusion of the fixed effect αi term.

To do any reasonable inference, we also assume that (Yit1 | β) is independent of (Yjt2 | β)
if i 6= j and that (Yit1 | β, αi) is independent of (Yit2 | β, αi) if t1 6= t2. These assumptions
are in general hard to verify on real data. However the fact that our observations hap-
pen at different times and are operationally not expected to have much influence on each
other, we believe they are met in our dataset to a reasonable degree. We also make the
assumption that the observed values our features are all linearly independent to guarantee
uniqueness of MLE estimators (to be introduced in the following sections). This is easy
to verify by putting all xit vectors into a matrix and verifying that the rank of this matrix
is equal to R. A final condition to guarantee uniqueness of MLE is that for every feature
there is at least one group in which the feature has at least two different values. If a
feature is invariant in every group there is no unique solution. This condition is also easy
to verify, and can be simply met by removing invariant features and implicitly including
them in the fixed effects.

Our goal is to construct consistent estimators β̂ and α̂ for β and α. If our assumptions for
the model hold these estimators give us an understanding as to how each variable affects
the probability of getting a positive response. We use two different MLE estimators to
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find reasonable β̂ and α̂ as described in the following sections.

5.2 Unconditional likelihood method

The most intuitive way to find our estimators is to find values of β̂ and α̂ that maxi-
mize the likelihood of our model. As we are working with the pure likelihood with no
additional conditioning, we will call this the ”Unconditional likelihood” (to contrast to
the Conditional likelihood in the next section). Implementation-wise this means treating
group characteristics as separate variables and dummy-encoding them into our features.
Compared to the alternative, the Conditional likelihood method, this method requries
less computation when dealing with large group sizes (O(T ) vs O(T 2)), which is crucial
for our goal of scaling our estimator to work on giant datasets. However, it suffers from
bias due to incidental parameters. The details of why it is biased and which methods
exist to deal with the bias are discussed in the next section. We can easily derive the
likelihood function for the fixed effect model using the independence assumptions:

L(β, α, y) = P(Y = y | β, α) =
I∏
i=1

Ti∏
t=1

P(Yit = zt | β, αi) =

I∏
i=1

Ti∏
t=1

σ(αi + xitβ
T )yit(1− σ(αi + xitβ

T ))1−yit

Then the log likelihood is given by

`(β, α, y) =
I∑
i=1

Ti∑
t=1

((yit(αi + xitβ
T ))− ln (1 + exp(αi + xitβ

T ))).

We can now define (β̂MLE, α̂MLE) = argmax
(β,α)

(`(β, α, y))

It is proven in [8] that the likelihood function is strictly concave with respect to β and
α under the linear independence and time-invairance assumptions. Hence, a solution for
this equation exists and is unique.

5.2.1 Computing the estimator

As the log likelihood function is strictly concave, there is only one local extremum and
it is at the global maximum, so (β̂MLE, α̂MLE) satisfies ˙̀(β̂MLE, α̂MLE, y) = 0. As the
likelihood equation is concave and smooth the Newton-Rapshod method converges quickly.
Thus if we define (β(0), α(0)) = 0 and (β(n+1), α(n+1)) = (β(n), α(n)) − H−1 ˙̀(β(n), α(n), y)
where H is the Hessian of the log likelihood ` at the point (β(n), α(n), y) we get a sequence
that converges to (β̂MLE, α̂MLE).

Computing this requires inverting the (R + I) × (R + I) Hessian. In general matrix
inversion is a computationally costly process (as the Hessian is a Hermitian matrix it can
be done by Cholesky decomposition in O((R + I)3) time). As I, the number of groups,
can get very large on large dataset (specifically we expect I to be O(N) on our dataset)
this can present challenges. Luckily, if we decompose our Hessian,

H =

[
Hβ,β Hβ,α

Hα,β Hα,α

]
,
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where Hβ,β = ( ∂2`
∂βiβj

)i≤R,j≤R, Hα,β = ( ∂2`
∂αiβj

)i≤I,j≤R, Hβ,α = HT
α,β, Hα,α = ( ∂2`

∂αiαj
)i≤I,j≤I

we notice that if i 6= j, ∂2`
∂αi,αj

= ∂
∂αi

(

Tj∑
t=1

(yjt −
exp(αj + xjtβ

T )

1 + exp(αj + xjtβT )
)) = 0.

So Hα,α is diagonal. Taking advantage of this, and utilizing Schur’s complement to write
out the inverse we can get an exact formula for updating (β, α) that requires only the
inversion of a R×R matrix and the I-fold addition of R-dimensional vectors leading to a
complexity of O(IR). The details of this approach and the resulting update formulas can
be found in Appendix A1 of [27].This appendix also contains closed form expressions for
the gradient and the Hessian. Using these update formulas we have a computationally
efficient method for finding (β̂MLE, α̂MLE).

Numerically speaking, inverting a matrix is not in general a stable operation. If a matrix
is badly conditioned, inverting it can explode numerical errors. As we use matrix inversion
as an integral component of both methods this is a significant problem. Fortunately, the
matrix we are inverting is a Hessian of a concave function, and thus positive definite. This
means that instead of regular matrix inversion we can use a LDL decomposition to find
the inverse. This greatly improves numerical stability.
If A is a positive definite matrix then a decompostion A = LDLT (where L is a lower unit
triangular matrix and D is a positive diagonal matrix) exists, is unique and we call it a
LDL decompostion. Details of how to implement and proofs of numerical stability when
solving a system with a LDL decomposed matrix can be found in [20].
However, due to floating-point rounding errors the computed version of the Hessian might
not in reality be positive definite. To be able to still run a numerically stable algorithm in
this scenario we implement the GMW81 Modified Cholesky Algorithm described in [26]

5.2.2 Incidental parameters problem

Our model falls into the nuisance parameter setup from [24], treating α as a nuisance
parameter in estimating β we can conclude that this estimator is biased and inconsistent
when N → ∞ and T remains bounded. Specifically it can be shown that E[β̂MLE] =
β0 + B

T
+ σ( 1

(T )
2 ) for some constant B. The reason behind it is that when the number of

intercepts to be estimated goes to infinity as the number of observations goes to infinity
(Eg. behavioral panel case), we get the ”incidental parameters” problem; in this situation
standard maximum likelihood results do not hold and maximum likelihood estimators may
not be consistent. In fact, the variance of α̂MLEi is O( 1

Ti
). As it is impossible to separate

αi and β from the non-linear likelihood function any variance ˆαMLEi results variance in the
estimate for ˆβMLE from that observation. There are two known approaches to correcting
bias both described in [18]. Jackknifing and an analytical method.

Jackknife Jackknifing is based on the idea that the size of the dominant term in the
bias expression (B

Ti
) is inverse proportional to group size. Therefore. halving the

number of observations in each group would result in doubling the term. Thus, if for
each dataset group (xi, yi) we randomly sample half the group and add it to a new
dataset (x1i , y

1
i ) and then add the other half to (x2i , y

2
i ) we can get β̂1

MLE and β̂2
MLE

as Unconditional MLE estimates of β0 on half-sets (x1, y1) and (x2, y2). Average

group size for each of these half-sets satisfies: T1 = T2 = T
2

and then it follows that:
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E[β̂1
MLE] = E[β̂2

MLE] = β0 + 2B
T

+ o( 1

T
2 )

so if β̂JNMLE = 2β̂MLE − 1
2
(β̂1

MLE + β̂2
MLE)

then E[β̂JNMLE] = 2E[β̂MLE]− 1
2
(E[β̂1

MLE] +E[β̂2
MLE]) = β0 + o( 1

T
2 )

This does not remove the bias completely, but it reduces the effect of the bias by
an order of magnitude. It can be seen in [18] that this correction performs well on
a Monte-Carlo experiment even with a strongly bounded group size (≤ 8).

Based on the idea of halving the panel data, we opt for a cross-over jackknife scheme.
As our estimator is sensitive to sampling methods we attempt to avoid instability
by attempting to capture the data structure in both subsets. Specifically, we divide
each panel in our dataset into the following two subpanels.

S1 = {(i, t) : i ≤ dI/2e, t ≤ dTi/2e} ∪ {(i, t) : i ≤ bI/2 + 1c, t ≤ bTi/2 + 1c}

S2 = {(i, t) : i ≤ dI/2e, t ≥ dTi/2e} ∪ {(i, t) : i ≥ bI/2 + 1c, t ≤ bTi/2 + 1c}

,where d.e and b.c denote the ceiling and floor function. Forming an estimator
βjack := 2β̂ − (βS1 + βS2)/2 removes bias both bias terms in large samples.

Asymptotic Analysis The analytical method consists of deriving an estimator B̂ for
the B in the bias term using a modification of the MLE and Bartlett identities and
then subtracting it:

β̂ANMLE = β̂MLE − B̂
T

., assuming E[B̂] = B, we get:

E[β̂ANMLE] = E[β̂MLE]− E[B̂]

T
= β0 + o( 1

T
2 )

The formula for the estimator and the process of deriving it are given in [18] chapter
4. It preforms similarly to the Jackknife estimator in the aforementioned Monte-
Carlo experiments. In particular, under some regularity conditions, [p.11 [18]] con-
cluded that analytical bias correction works asymptotically as well.

Given that the Analytical method is to our knowledge so far only developed for
use in balanced panels, and the Jackknifing method works for unbalanced panels
(panels that are not all of the same size) as well, and that Jackknifing works no
matter which link function is used we opt to use the Jackknifing method in our
implementation.

5.3 Conditional likelihood method

Another way to estimate parameters in Fixed effects model is to use conditioning to get a
likelihood equation without an α term. Conceptually it similar to demeaning in the case
of fixed effects linear regression models[27]. In a logistic model this is done by conditioning
Yi on

∑Ti
t=1 Yit and trying to maximize it’s likelihood. More formally:

Take any i ≤ I and any z ∈ {0, 1}Ti , then by independence:
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P(Yi = z | β, αi) =

Ti∏
t=1

P(Yit = zt | β, αi) =

exp(αi

Ti∑
t=1

zt +

Ti∑
t=1

ztxitβ
T )

Ti∏
t=1

(1 + exp(αi + xitβ
T ))

Now we define k =

Ti∑
t=1

zt and Zk = {zk ∈ {0, 1}Ti |
Ti∑
t=1

zkt = k}, we can introduce an

ordering on this set to get zk(1), z
k
(2), . . . z

k

( k
Ti

)
.

Then: P(

Ti∑
t=1

Yit = k | β, αi) =

( k
Ti

)∑
j=1

P(Yi = zk(j) | β, αi) =

( k
Ti

)∑
j=1

exp(αi

Ti∑
t=1

zk(j)t +

Ti∑
t=1

zk(j)txitβ
T )

Ti∏
t=1

(1 + exp(αi + xitβ
T ))

Then : P(Yi = z |
Ti∑
t=1

Yit = k, β, αi) =
P(Yi = z | β, αi)

P(

Ti∑
t=1

Yit = k | β, αi)

=

exp(

Ti∑
t=1

ztxitβ
T )

( k
Ti

)∑
j=1

exp(

Ti∑
t=1

zk(j)txitβ
T )

Note that this expression does not depend on αi (

Ti∑
t=1

Yit is sufficient for it) so we can

define a conditional likelihood function

LC(β, y) =
I∏
i=1

P(Yi = yi |
Ti∑
t=1

Yit =

Ti∑
t=1

yit, β) and the log likelihood:

`C(β, y) =
I∑
i=1

lnP(Yi = yi |
Ti∑
t=1

Yit =

Ti∑
t=1

yit, β) and β̂CMLE = argmax
β

`C(β, y)

It is proven in [8] this likelihood function is also concave, so it gives a unique solution,
but also that this method gives a unbiased and consistent estimator for β0, unlike the
unconditioned MLE method.

5.3.1 Computing the estimator

Just like in the unconditional case, the log likelihood function is concave, and there is only
one local extremum which is at the global maximum, so β̂CMLE satisfies ˙̀

C(β̂CMLE, y) =
0. Again the likelihood equation is concave and smooth the Newton-Rapshod method
converges quickly.
So analogously we can define β(0) = 0 and the recursion: β(n+1) = β(n) −H−1C ˙̀

C(β(n), y).
whereHC is the Hessian of the conditional likelihood at (β(n), y). for computing a sequence
that converges to β̂CMLE.
If we define:

`iC(β, y) = lnP(Yi = yi |
Ti∑
t=1

Yit =

Ti∑
t=1

yit, β, αi) ti =

Ti∑
j=1

yit
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d0i =

(ti
Ti

)∑
j=1

exp(

Ti∑
t=1

zti(j)txitβ
T ) d1il = ∂d0i

∂βl
=

(ti
Ti

)∑
j=1

(

Ti∑
t=1

zti(j)tlxitl)exp(

Ti∑
t=1

zti(j)txitβ
T )

d2ilk =
∂d1il
∂βk

=

(ti
Ti

)∑
j=1

(

Ti∑
t=1

zti(j)tlxitl)(

Ti∑
t=1

zti(j)tkxitk)(exp

Ti∑
t=1

zti(j)txitβ
T )

Then simple differentiation yields: `iC(β, y) =

Ti∑
t=1

yitxitβ
T − ln d0i

∂`iC
βl

(β, y) =

Ti∑
t=1

yitlxitl −
d1il
d0i

∂2`iC
βlβk

(β, y) =
d2ilk
d0i
− d1ild1

i
k

(d0i)2

This is worrying as the expression for our likelihood, gradient and Hessian contain sums
of
(
ti
Ti

)
terms. Even for limited group sizes this quickly becomes unfeasible to compute

brute-force (eg. ti = 10, Ti = 100 =⇒
(
ti
Ti

)
≈ 1018)

Since many of these terms share common factors, a dynamic recursion can be defined that
can find d0i, d1i and d2i terms in O(tiTiR

2) time. Recursively define:

d0i(0, n) = 1 d0i(d, n) = d0i(d− 1, n− 1)exp(xinβ
T ) + 1d<nd0i(d, n− 1)

differentiating both sides by βl yields:

d1il(d, n) = d0(d−1, n−1)xinlexp(xinβ
T )+1d<nd1il(d, n−1)+1d>1d1il(d−1, n−1)exp(xinβ

T )

differentiating both sides by βk yields:

d2ilk(d, n) = d0(d− 1, n− 1)xinlxinkexp(xinβ
T ) + 1d<nd2ilk(d, n− 1)

+1d>1exp(βnxin)(d2ilk(d− 1, n− 1) + d1il(d− 1, n− 1)xink + d1ik(d− 1, n− 1)xinl)

It can be easily checked that d0i = d0i(ti, Ti), d1il = d1il(ti, Ti) and d2ilk = d2ilk(ti, Ti)
As each recursion has tiTi

2
states we see that this is the number of steps required to

calculate any single value. As there are R2 components of d2i we need O(tiTiR
2) per

group to calculate the Hessian. As ti ≤ Ti we get a worst case complexity of O(‖T‖22R2).
For a bounded vector T this can be computationally efficient. But for ‖T‖∞ → ∞ we
will need to rely on approximations of the log likelihood, gradient and Hessian.

5.3.2 Approximating the log likelihood

Breslow (see [6]) and Peto (see [16]) suggested an approximation computing d0i as(∑Ti
t=1 exp(xitβ

T )
)ti

. This approximation will break down when ti are large relative to

the size of the observations of the group, Ti, and then tends to yield estimates of β, which
are biased toward 0.

Efron(see [13]) suggests an even closer approximation to the likelihood, computing d0i as

Πti
r=1Π

ti
r=1

(∑ti
l=1(1−

r−1
ti

)exp(xilβ
T )
)

Like the Breslow approximation, Efron’s[13] method yields estimates of β, which are
biased toward 0 when there are many instances within a group. However, the Efron
approximation is much faster than the exact methods and tends to yield much closer
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estimates than the Breslow approach(see [13]).

Hertz [19], points out using simulated data without censoring in Cox model that Breslow
approximation tends to underestimate the true β. As the ties become heavier, the bias of
these approximations increases. The Efron [13] approximation performs far better than
the other two, particularly with moderate or heavy ties; even with n = 25 in each group,
the bias is under 2 percent, and for sample sizes larger than 50 per group, it is less than
1 percent. Although the Breslow approximation is the default in many standard software
packages, the Efron method for handling ties is to be preferred, particularly when the
sample size is small.

In our implementation, correctness is a more important factor than computational com-
plexity(as this could be mitigated with a larger cluster of computers), so we opt to use
the exact method.

5.4 Average partial effects

The formula for the partial effect with respect to an observation xit in the Fixed effects
model is given by:

∂P(Yit = 1 | β0, α0i, xit)

∂xit
= f(αi + xitβ)β

Where f is is the logistic pdf.

So the average partial effects are given as an average of these effects

APE =
1

NT

I∑
i=1

Ti∑
t=1

f(αi + xitβ)β

We can get an estimator ˆAPE by plugging in estimators β̂ and α̂

ˆAPE =
1

NT

I∑
i=1

Ti∑
t=1

f(α̂i + xitβ̂)β̂

The consistency of this estimator depends on the consistency of β̂ and α̂. Maximizing the
unconditional likelihood results in a biased β̂ and an inconsistent α̂ while maximizing the
conditional one leaves us with no α̂ estimator. If we knew the data-generating β we could
estimate each αi as and MLE estimator of the unconditional likelihood of group i with β
fixed.
α̂iβ = argmax

αi

(`i(αi, β, y))

This estimator is consistent as Ti → ∞ if β is exact. This consistency property holds if
we plug in a consistent estimator β̂. The conditional method already produces one and
the unconditional method does as well after application above described bias-correction
methods. Therefore the following 3-step method:

1. Estimate a consistent β̂ by conditional or bias-corrected unconditional MLE esti-
mators
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2. Plug in β̂ to estimate α̂β

3. Plug in β̂ and α̂β to get ˆAPE

results in a consistent estimator when N →∞ and for all i Ti →∞

5.5 Distributed computation to model Fixed Effects Logit

Looking at our formulas for the Hessian and gradient in the conditional model and in

the unconditional model from [27] we see that they can be written as H =
I∑
i=1

Hi and

g =
I∑
i=1

gi where ∀i the terms Hi and gi can be computed only using data from group i.

It is trivial to see that a similar approach can be used to compute APE’s.
Conditional case:

H =
I∑
i=1

(
d2i
d0i
− d1i
d0i

(
d1i
d0i

)
T

)

and

g =
I∑
i=1

(xiyi −
d1i
d0i

)

Unconditional case(using notation from [27]):

H = Hββ −
I∑
i=1

(h−1αiαi
hβαi

hTβαi
) =

I∑
i=1

Ti∑
t=1

xTitxitpit(1− pit)−
I∑
i=1

(h−1αiαi
hβαi

hTβαi
) =

=
I∑
i=1

(

Ti∑
t=1

xTitxitpit(1− pit)− h−1αiαi
hβαi

hTβαi
)

g = gβ −
I∑
i=1

(h−1αiαi
gαi
hβαi

) =
I∑
i=1

Ti∑
t=1

xitpit(1− pit)−
I∑
i=1

(h−1αiαi
gαi
hβαi

) =

=
I∑
i=1

(

Ti∑
t=1

xitpit(1− pit)− h−1αiαi
gαi
hβαi

)

This means that we can implement computing of Hessian and gradient contributions from
each group independently and then simply add them all together. In terms of distributing
computation this means that we can store most of our data on local machines and do
computation for their contribution locally and then just broadcast the results and add
them together. This process can easily be implemented as map-reduce procedure which
makes it easy to use Spark packages for a simple and efficient distribution of computation
allowing for clean scalabilty.
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6 Results and Conclusion

As a result of our implementations in TensorFlow and Apache Spark, we are now able
to compare the results of pooled and fixed effect regession on very large datasets. Figure
10 shows the retrieved APEs of pooled logistic, pooled probit and logistic regression with
fixed effects. Note that for fixed effect models, all APEs of invariant features within
groups are zero.

Figure 10: Average Partial Effects.

In this project, we introduce groundbreaking solutions for causality inference with big data
technologies. From now on, we enable both the scientific community and business leaders
to perform causality analysis on extra-large datasets with big data tools. Our unique
package in TensorFlow allows for fitting pooled regressions with arbitrary link functions,
utilizing parallel calculations on GPUs and automatic differentiation. The highly-scalable
Apache Spark solution is the first existing approach for distributed estimation of linear
models with unobserved effects on high volumes of data, which has never been feasible
before. We are proud and honored to bridge the gap between the methods and technolo-
gies in econometrics and big data domains, utilizing their best capabilities.

Of course, our work could make additional contributions and be further extended. A
natural extension of our implementation in TensorFlow would be to enable also the esti-
mation of fixed effects models. The main challenge here arises from the fact that these
models heavily rely on appropriate grouping and splitting of the data in order to perform
the group-wise calculation for fitting and evaluation. Since such kind of preprocessing on
very large datasets is not a core capability of TensorFlow, different techniques would be
necessary compared to the way we are able to do this with Apache Spark. One promising
approach to overcome this limitation is to utilize cutting-edge cloud technologies for data
ingestion, such as Amazon Athena, as a complement to TensorFlow. This would provide
the user not only with a highly efficient but also a cost-optimal solution.

Another natural extension of our work would be to implement a generalized fixed effects
model that goes beyond just fitting a fixed effects logistic regression. Looking at the way
we compute the gradient and Hessian in a distributed manner, the way we do Newton
method iterations, and the way we compute the statistical summary, it becomes clear that
most of the process (at least in the unconditional model) does not depend on a specific
choice of link function. Thus, it should be relatively easy to generalize to any fixed effects
generalized linear model by changing only a few lines of code. We have put this principle
to the test by implementing a fixed effects Poisson regression within our framework that
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got good results on large test datasets. Following on this path implementing, a fixed
effects probit, Gamma, inverse-Gaussian and other regressions would be an interesting
continuation of our project.



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[2] J. Aldrich, J. Nelson, F. Nelson, E. Adler, and i. Sage Publications. Linear Proba-
bility, Logit, and Probit Models. Linear Probability, Logit and Probit Models. SAGE
Publications, 1984.

[3] T. Amemiya. Qualitative response models: A survey. Journal of Economic Literature,
19(4):1483–1536, 1981.

[4] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon. Automatic differ-
entiation of algorithms. Journal of Computational and Applied Mathematics, 124(1-
2):171–190, 2000.

[5] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differ-
entiation in machine learning: a survey. The Journal of Machine Learning Research,
18(1):5595–5637, 2017.

[6] N. Breslow. Covariance analysis of censored survival data. Biometrics, pages 89–99,
1974.

[7] A. C. Cameron and P. K. Trivedi. Microeconometrics: Methods and Applications.
Cambridge University Press, 2005.

[8] G. Chamberlain. Analysis of covariance with qualitative data. The Review of Eco-
nomic Studies, 47(1):225–238, 1980.

[9] E. A. CHAMBERS and D. R. COX. Discrimination between alternative binary
response models. Biometrika, 54(3-4):573–578, 12 1967.

[10] S. Chapple, E. Troup, and T. Forster. Mastering Parallel Programming with R.
Community experience distilled. Packt Publishing, 2016.

[11] R. Core-Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2013.

[12] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12(null):2121â“2159, July 2011.
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