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Abstract

The task of policy-based risk assessment is of vital importance to the financial and legal
viability of an organization as well as to its credibility and trust amongst the public at
large. In this project, we aim to map reference statements from policies to a risk register
and identify the most likely risks that may result from their flawed implementation. For
this project, we have made use of a registry of risks provided to us by Alyne GmbH that
was crafted by legal experts familiar with governing regulations. In place of policies from a
particular firm, we make use of a generic list of policy statements provided to us by Alyne
GmbH. The data from these two sets are processed using several approaches, namely,
natural language inference, contrastive learning, and approximate nearest neighbor search.
The results from these aforementioned approaches are then passed to a gradient boosting
algorithm that aggregates relevancy scores from these models to come up with a final
ranking for each user-provided reference statement.
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1 Introduction

1.1 Motivation

According to a recent PwC report[1], 86% of global firms expect GDPR non-compliance to
negatively a↵ect their operations. Due to fines approaching 4% of turnover for most firms
in 2019, compliance is of utmost importance. Globally, Ernst & Youngs estimates that
GDPR compliance costs $7.8 billion for the 500 largest corporations [2]. As challenging
as the GDPR and other nation-specific regulations are to a firm’s profitability, these
regulations also present a great opportunity to automate the risk assessment process [3].
Following the financial crisis in 2008, firms disproportionately focused on market and
credit risks, while operations risks were handled by separate business units [4]. As a
result, it becomes di�cult to determine how risks relate in real-time. By automating risk
assessment, firms can learn risk interdependencies, whilst focusing their e↵orts on their
core business objectives.

1.2 Project goals

This project aims to identify relevant risks associated with a given policy statement. Us-
ing Alynes’ risk registry, we identify which risks qualify as “relevant risk” from multiple
perspectives. As a first step, we establish a few baselines using cosine similarity and
Meilisearch. After developing our baselines, each of us assessed the suitability of sev-
eral state-of-the-art approaches to our task. Our final report includes the approaches
that outperform our baseline models on a set of metrics, while the appendix contains
approaches that did not meet this criterion. Following our approaches, we apply Light
Gradient Boosting (LightGBM) which ranks risks in order of relevance for a given policy
statement.

1.3 Prior works

We seek to solve a multilabel problem where each risk is a label, and each reference can
be mapped to several risks. A 2020 survey report by Qaraei et. al [5] highlights how most
extreme multilabel classification models achieve a performance below linear classifiers.
Although recent models ([6], [7]) produce superior results, the di�culty of training such
models without GPUs and the inability to incorporate risk attributes have kept us from
investing much time and e↵ort in this area. The Appendix presents results based on
simpler multilabel models. Instead, we used lexical matching and approximate nearest
neighbor search techniques. We make use of TF-IDF embeddings, sentence transformers,
and embeddings from FastText models trained on GDPR texts. Contrastive learning
methods such as SimCSE[8] and natural language inference models are utilized considering
the risk mapping problem as a text similarity problem between policy statements and risk
descriptions. Additionally, we employ a state-of-the-art approximate nearest neighbors
search algorithm based on Navigable Small Worlds.
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2 Data Analysis

2.1 Data description and statistical data exploration

Before starting the project, we investigated and analyzed the data provided to us by Alyne
GmbH to understand patterns and characteristics.

Risk database Alyne GmbH provided us with two datasets. The first dataset contains
a risk database which is describing 1041 risks from the Alyne GmbH registry.

Field Description
riskId Unique identifier of the risk
type Type of the risk
en US description Description of the risks in US
en GB description Description of the risks in GB
en DE description Description of the risks in DE
impact Score of the risk. Represents its cruciality.
riskLinks Links from the current risk to other risks
isCore Label for the core risks
pathsToLeaves Paths from other risks to the current risk
pathsToCore Paths from current risk to core risks
isLeaf Label for the leaf risks

Table 1: Description of the fields of risk database

Distribution of risks per risk type is given below:

Figure 1: Distribution of risk counts per type in the risk database

The most common types of risks are Operational, Financial and Legal Compliance. The
least common types are Core risks and Reputational risks.

We can also look at the distribution of the word counts in risk descriptions.
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Figure 2: Distribution of word counts in risk descriptions in the risk database

As we can see from the plot, on average the risk is described by six or seven words.

Reference dataset The second dataset consists of 3265 references mapping to control
statements and corresponding risks.

Field Description
reference Text of the reference
control statement Text of the control statement
riskId Unique identifier of the risk
type Type of the risk
en US description Description of the risks in US
en GB description Description of the risks in GB
en DE description Description of the risks in DE
impact Score of the risk. Represents its cruciality.
riskLinks Links from the current risk to other risks
isCore Label for the core risks
pathsToLeaves Paths from other risks to the current risk
pathsToCore Paths from current risk to core risks
isLeaf Label for the leaf risks

Table 2: Description of fields of reference dataset

There are six references which don’t have any mapping to any risk, so we excluded these
references from further analysis and worked with the rest of 3259 references. Also, it
appears that only 554 out of 1041 risks are presented in the second dataset. Distribution
of risks per type is given below:
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Figure 3: Distribution of risk counts per type in the reference dataset

From the plot, we can see that in the second dataset, types of risks are distributed almost
in the same way as in the risk database. As our task is to map a text of the reference to
one or multiple risks, we also need to look at the distribution of risk counts per reference
in the second dataset:

Figure 4: Distribution of risk counts per reference in the reference dataset

We see that the distribution of risk counts per reference is very skewed to the left. Most
references have less than 50 risks, but some of the references have more than 100 risks.
On average, we have 9 risks per reference. The minimum number of risks per reference
is 1 and the maximum number of risks per reference is 337. The median is 4 risks per
reference. It is also interesting to look at the distribution of reference counts per risk:
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Figure 5: Distribution of reference counts per risk in the reference dataset

As we can see from the plot, the distribution of reference counts per risk is also skewed
to the left. On average, there are 53 references per risk. The minimum is 1 reference per
risk, the maximum is 687 references per risk. The median is 24 references per risk.

Additionally, we looked at the distribution of the word counts per reference:

Figure 6: Distribution of word counts per reference in the reference dataset

We can see that on average a reference is described by 115 words. The minimum number
of words in reference is 2 and the maximum number is 5234. Also, we looked at the
distribution of word counts per control statement:
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Figure 7: Distribution of word counts per control statement in the reference dataset

On average, a control statement is described by 19 words. The minimum number of words
in the control statement is 5 and the maximum number is 91.

2.2 Data splitting

To evaluate our models objectively, we created fixed train, validation, and test sets. We
split our data such that references in the test set are not in the train and validation set.
Additionally, each reference in the validation and test set has less than 10 risks. In the
end, we have 2513 references for the train set, 246 references for the validation, and 500
references for the test set. The train set contains 16369 risks and includes 552 unique risks
out of 554 total unique risks in the reference dataset and each reference has 6.51 risks
on average. The validation set contains 787 risks of 229 unique risks and each reference
has 3.19 risks on average. The test set contains 1568 risks of 362 unique risks and each
reference has 3.13 risks on average.

2.3 Metrics

To evaluate and compare our approaches, we considered several metrics such as precision
(P@K), recall (R@K), mean average precision (MAP@K), and r-precision (RP@K) scores
for top-K prediction. For our problem, we mostly considered R@K and MAP@K scores
since the number of predictions (K) is most of the time higher than the number of true
risks. RP@K score equals R@K when K is chosen as a number that is higher than 10
since the number of risks for each reference in the test set is always less than 10. The
calculation of each of these metrics is given below:

R@K(Recall) =
1

T

TX

t=1

St(K)

Rt
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P@K(Precision) =
1

T

TX

t=1

St(K)

K

RP@K(Recall-Precision) =
1

T

TX

t=1

St(K)

min(K,Rt)

APt@K =
1

K

KX

i=1

St(K)

K

MAP@K =
1

T

TX

t=1

APt@K

where T is the total number of test documents, K is the number of labels to be selected
per document, St(K) is the number of correct labels among those ranked as top K for
the t-th document, and Rt is the number of gold labels for each document.
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3 Methods

3.1 Elasticsearch

Elasticsearch [9] is a distributed, RESTful search and analytics engine and document store
which allows storing, searching and analyzing huge volumes of data quickly. In Elastic-
search, documents are stored as structured data encoded in JSON instead of rows like in
relational databases. Indices are a collection of documents that have similar characteris-
tics such as logically related documents and similar to databases in relational databases.
The inverted index is a data structure that stores a mapping from content to its locations
in documents. Instead of searching text directly, it searches an index. Mapping each
unique token to a list of documents containing that word makes it possible to locate doc-
uments within given keywords very quickly. There are many alternative search engines
such as Meilisearch [10], Typesense [11], Algolia [12], and Redisearch [13].

Meilisearch is another open-source alternative to Elasticsearch. Although it provides
fewer features, it is more lightweight than Elasticsearch, works out-of-the-box well, it can
return search results very quickly.

3.2 Cosine similarity with TF-IDF

TF-IDF The term frequency-inverse document frequency (TF-IDF) is a popular weight-
ing scheme that is used to improve the simple count-based data from the bag of words
model. It is the product of two values, the term frequency and the inverse document
frequency

TF-IDF(t, d) = TF(t, d)⇥ IDF(t)

where TF(t, d) is term frequency which is the number of times term t appears in a doc d
and IDF(t) is the inverse document frequency, which is estimated by

log
1 + n

1 + df(d, t)
+ 1

where n is # of documents and df(d, t) is document frequency of the term t

Cosine Similarity Given two vectors of attributes, A and B, the cosine similarity,
cos(✓), is represented using a dot product and magnitude as

cos(✓) =
A · B

||A|| ||B|| =
Pn

i=1 AiBipPn
i=1 A

2
i

pPn
i=1 B

2
i

3.3 Sentence Transformer

Sentence Transformers is a framework for calculating dense vector representations for
sentences and paragraphs. The models are based on transformer networks like BERT
[14], RoBERTa [15], XLM-RoBERTa and achieve state-of-the-art performance in various
tasks. We can use this framework to compute sentence embeddings for given texts. These
embeddings can then be compared with measures of similarity to find groups of sentences
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which are similar in meaning. In this project, we mainly use sentence-transformers based
on MPNet models.

3.4 Natural Language Inference

Natural language inference task is given sentence pairs which are called premise and
hypothesis, the model predicts whether the hypothesis about the premise is true (en-
tailment), false (contradiction), or undetermined (neutral). Before the success of deep
learning approaches, symbolic and statistical approaches such as deterministic rules which
exploit handcrafted lexical features and word matching [16], decision trees [17], and naive
Bayes classifiers [18] were applied to solve the natural language inference problem and
comparable approaches were applied on Recognizing Textual Entailment (RTE) [19] chal-
lenges. Benchmarks with a large amount of data allowed researchers to address the
problem with deep neural networks where non-contextual word embeddings models such
as GloVe [20], word2vec [21] or pretrained contextual representations such as ELMo [22],
BERT embeddings were used together with LSTMs, CNNs or transformer-based architec-
tures [23]. Additional to RTE, benchmark datasets include SNLI [24], MNLI [25], SciTail
[26] datasets. Please check the survey paper for more details [27].

3.5 Contrastive Learning

Contrastive learning (CL) is a paradigm that allows models to learn about data by gath-
ering similar examples closer and pushing di↵erent examples further away without the
use of labels [28]. It greatly enhances the performance of the model by training in a self-
supervised way and is successfully applied for computer vision [29], and natural language
processing (NLP) tasks [21], [8]. For the training of contrastive learning, negative samples
and positive samples should be determined. We can define contrastive loss as below:

Lcontrastive = � log
exp(sim(q, k+)/⌧)

exp(sim(q, k+)/⌧) + exp(sim(q, k�)/⌧)

where q is reference sample, k+ is positive sample, k� is negative sample, sim() is similarity
function, ⌧ is temperature coe�cient. Contrastive loss is low when easy negative samples
are chosen and high when hard negative samples are chosen. Therefore, choosing negative
samples properly has an impact on the performance of the model after training.

SimCSE SimCSE [8] is a contrastive learning model which enhances state-of-the-art
sentence embeddings by encoding the same data twice. It achieved a better Spearman’s
correlation score than SBERT on semantic textual similarity (STS) tasks. It makes use of
NLI datasets where entailment pairs are used as positive samples and contradiction pairs
are used as negative samples. It can be used both in supervised and unsupervised data.
An example of the SimCSE approach is given below:
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Figure 8: Unsupervised and supervised SimCSE approach

3.6 Approximate Nearest Neighbor Search

A K Approximate Nearest Neighbor (K-ANN) approach is referred to as Hierarchical
Navigable Small Worlds Graph [30] is used to perform semantic similarity search.

Figure 9: t-SNE Scatter Plot of 554 Risks

Traditionally, K-NN has been used to retrieve semantically similar documents [31]. How-
ever, the KNN approach does not scale well for very large datasets; furthermore, the
K-NN approach assumes a defined distance function, which does not work for graphs
with documents at varying distance scales. For large datasets, an exact KNN search is
also associated with intractable time complexities.
For these reasons, we have considered using a K-ANN search algorithm. Since risks in our
registry are clustered very closely together, we opt for the HNSW approach instead of the
greedy proximity graph method that performs poorly on such data [32]–[40]. According
to Malkov et al., HNSW improves search complexity by using zoom-in and zoom-out nav-
igation levels. In HNSW each layer has links of a certain scale (inspired by probabilistic
skip list structure [41]).
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Figure 10: Hierarchical Navigable Small Worlds Algorithm

Fig. 10 illustrates the search process. The query embedding greedily navigates to “R21”
in the top layer, then from there to “R48” in the second layer, until it reaches the most
similar risk embedding in the zeroth layer, i.e.; “R429” with the score “0.92”.
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4 Implementation

4.1 Baselines

4.1.1 Meilisearch

For the integration of the Meilisearch document store into our task, initially we launched
the Meilisearch in development mode with a predefined master key. After establishing
a connection with the server and creating an index, documents are created using id,
reference text, and the corresponding list of risk ids given training data. For the predic-
tion of relevant risks, the target reference is searched through the index with a limit of
4000 documents, and documents that include lexically similar references are ranked with
Meilisearch’s built-in ranking rules. Lists of risks from these similar references are ranked
accordingly. There were two issues with this approach. Meilisearch could not return all
risks (or documents). To overcome this problem, scores for unmatched risks are set to
zero. Secondly, returning the internal score for matches is still not implemented. Thus,
relevancy scores for matched risks are given between 0 and 1 depending on the ranking
of the document. In this approach, risks that are in the same list for a specific reference
have the same relevancy score. Finally, top-K risks are chosen from the ranking of risks
for the prediction.

Figure 11: Metrics for reference to reference similarity with Meilisearch on the test set

4.1.2 Cosine similarity with TF-IDF

To represent references and risks as a vector, we fitted and transformed reference texts
and risk descriptions to a vector of token counts using TfidfVectorizer. Secondly, using
the TF-IDF feature matrix, we applied a transformation to the examples from the test
set. Then, we computed cosine similarity for each reference and risk description pair in
the test set. Finally, we took K risks with the highest cosine similarity score and returned
them as our prediction. The results for this approach are given below:
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Figure 12: Metrics for cosine similarity with TF-IDF on the test set

4.2 Sentence Transformer

First, we chose several pretrained sentence-transformer MPNet models such as “all-mpnet-
base-v1”, “paraphrase-mpnet-base-v2”, “multi-qa-mpnet-base-cos-v1”, “all-mpnet-base-
v2” and then transformed each reference text and risk description to 768-dimensional
dense vectors. For each reference and risk pair, we computed mean embeddings from
each of our previously chosen models. We calculated cosine similarity between reference
embeddings and risk description embeddings and sorted them by their score. Finally, we
selected top-K risks as our prediction.

Figure 13: Metrics for mean sentence-transformer embedding on the whole data

4.3 Natural Language Inference

For the adaptation of natural language models to the risk mapping task, we use reference
text as the premise and risk description as the hypothesis. If correct risk description is
used as a hypothesis, the model should return a high entailment score, otherwise, it should
return a low entailment score. You can see the simplified model architecture below:
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Figure 14: Risk mapping as natural language inference problem

ELECTRA [42] model which was trained on MNLI benchmark is used for the inference
without additional training. For each reference text, entailment scores for all risks are
calculated using risk description from the risk register. Risks are sorted by entailment
scores and top-K risks with high entailment scores are returned as the prediction of the
model.

Figure 15: Metrics for natural language inference on the test set

4.4 Mean Reference Embeddings

In this approach, we used ’legal-bert-base-uncased’ which is a BERT model previously
trained on legal data such as contracts and legislations. We created reference embeddings
from the train set and references are grouped by risks. To create our risk embeddings, we
compute mean reference embeddings for each risk. Finally, we computed cosine similarity
scores between reference embeddings in the test set, and risk embeddings (mean reference
embeddings) and rank them accordingly. Finally, we choose the highest top-K risks as
our prediction.
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Figure 16: Metrics for mean reference embeddings on test set

We also checked the performance of this approach by varying the number of references
used to encode the risk.

Figure 17: Mean number of references for risk encoding

From the plot, we can see that for the value of k greater than 25 the performance of this
approach converges to R@K = 47%.

4.5 Contrastive Learning

For the contrastive learning approach, the supervised SimCSEmodel which uses RoBERTa-
large model (24 layers, 1024 hidden representation, 16 heads) and is trained on NLI
datasets (SNLI, MNLI) is chosen due to its performance in semantic textual similarity
tasks.

Creating NLI dataset To finetune the model, NLI datasets which include target, pos-
itive and negative samples are required. Reference texts are chosen for the target samples,
positive samples are chosen from the risk descriptions of true risks. For finding hard neg-
atives, cosine similarity between reference text and all risk descriptions are computed and
ranked using the pretrained SimCSE model. The risk descriptions which have high cosine
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similarity for that specific reference and not true risks are chosen as hard negatives for
the NLI dataset. The number of hard negatives is chosen as five for references that have
less than five risks and set to the number of true risks when the number of true risks for
the reference is more than five.

Training Model is trained for 3 epochs with a batch size of 32 using pretrained RoBERTa
model and NLI dataset. The learning rate is set to 5e-5 and the temperature coe�cient
is 0.05.

Figure 18: Comparison of recall on the test set with and without finetuning SimCSE

Figure 19: Comparison of mean average precision on the test set with and without fine-
tuning SimCSE

4.6 Qdrant Neural Search

Qdrant neural search is a vector similarity search engine based on hierarchical navigable
small world indexing graph. Neural search finds applications in areas where queries cannot
be formulated precisely. Qdrant works by generating a neural database using vector data
and payload data.
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We represent each risk as the mean embedding of all of the references in the train set that
it maps to. To vectorize the reference text, we use two approaches, namely the MPNetv2
sentence transformer [43] and a FastText-based model pretrained on GDPR text.

Figure 20: Qdrant Neural Search Engine Components

In the above diagram, “Payload Data” refers to the risk attributes and vector embeddings,
which are used to generate a vector index. The vector index helps to query several vectors
similar to the target vector.In Fig. 21 the x-axis depicts the top-K predictions that we
consider for each of the 500 reference policy statements from the test set. These predictions
are compared against the true set of risks associated with the test set reference statements.
In this plot, the red curve represents the MPNetv2 model and the blue represents the
GDPR-based model. Examining the plot, it is clear that the MPNetv2 model performs
better for increasing values of top-K predicted risks. Therefore, we can conclude that a
general sentence textual similarity (STS) model is more suited to working with reference
and risk statements that can have large variations in their vocabulary and themes. The
GDPR-based model is specific to data protection policies, hence it is unable to generalize
well enough to di↵erent types of risks. For this reason, the reference-to-risk similarity
scores obtained from the MPNetv2 model were used in the LightGBM method.

Figure 21: MPNetv2 vs. FastText GDPR for R@K
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5 Results

5.1 LightGBM

In the previous sections, we described our approaches and their results. As a final step,
we decided to rank the scores of our models with the help of the LightGBM ranker and
get the final ranking. LightGBM is a framework developed by Microsoft which is based on
the ensemble of decision trees, which are trained in sequence using the gradient boosting
method. In addition to classification and regression tasks, it is also able to do ranking.
During ranking, we used LambdaRank as our objective function and as an evaluation
metric, we used normalized discounted cumulative gain (NCDG).

DCG@k =
kX

n=1

relevancei
log2(i+ 1)

where relevancei is the relevance score of risk i.

IDCG@k =
KidealX

n=1

relevanceideali

log2(i+ 1)

where relevanceideali is the relevance score of risk i. Ideal DCG score - score when we
recommend the most relevant items first.

NDCG@k =
DCG@K

IDCG@K

We trained LightGBM ranker on scores of our models from validation set, finetuned on
scores of our models from validation set, and finally checked performance on the test set.

5.2 Error Analysis

We first consider the risks that are most often wrongly predicted for a given reference.
Across all our approaches we compiled a list of the top 50 most wrongly predicted risks
at R@30. There are 116 such risks, and 8 amongst them are common across all methods.

Risk-Scores Intersection-List Scores Union-List Scores
Count 554 8 116
Mean 38.9% 48.6% 45.5%
Std 6.7% 1.2% 3.9%
Min 10.4% 46.3% 31.8%
25% 34.2% 48% 44.3%
50% 40.1% 48.7% 46.4%
75% 44.3% 49.3% 47.9%
Max 52.9% 50.2% 52.9%

We observe that the top 75% of risks in the union list lie in the top 25% of all risks by
similarity score. Based on this we can ascertain that 50R@30 risks share a high degree
of semantic similarity across most references. This suggests that there is some deeper
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sense of similarity between references and risks that is overlooked by our approaches. We
hypothesize that a lack of domain knowledge contributes to these wrong predictions. To
explore this hypothesis we consider a subset of 29 risks that are unique to the Qdrant
approach. We represent these risks using the MPNetv2 and FastText GDPR model and
store how often they are correctly and wrongly predicted across all references.

Figure 22: Number of correct predictions: MPNetv2 vs FastText GDPR

In fig. 22, we observe that 21 of the most wrongly predicted risks are predicted correctly
more often by the FastText GDPR model, with 15 risks containing terms commonly found
in GDPR. Risk R224 contains many such terms and is predicted correctly 4 times more
often by the GDPR model. This trend is reversed in fig. 23.

Figure 23: Number of wrong predictions: MPNetv2 vs. FastText GDPR

We reason that a model with some domain knowledge can correctly predict some risks,
while its specificity limits it from predicting others, resulting in many wrong predictions.
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5.2.1 Quantitative Analysis

Recall Mean Average Precision
R@10 R@20 R@30 MAP@10 MAP@20 MAP@30

Meilisearch 32.36 40.10 46.43 20.48 21.51 21.95
Natural Language Inference 7.78 11.81 15.65 2.89 3.24 3.43
Mean Reference Embeddings 34.78 46.11 53.83 17.59 19.17 19.79
Qdrant 65.18 77.53 83.57 43.80 45.84 46.50
SimCSE 73.91 87.22 91.93 44.96 47.68 48.33

LightGBM (ndcg) 77.72 90.02 93.61 52.19 54.74 55.31
LightGBM (map) 81.32 91.71 94.53 57.11 58.59 59.72

Table 3: Comparison of metrics of our methods on test set

Our best performing model was SimCSE which acquired recall of 91.93 for top-30 predic-
tion since it is finetuned on reference dataset and contrastive learning approaches work
well with small amount of data. Following SimCSE, the Qdrant model achieved an R@30
score of 83.57. The natural language inference model was the worst performing model
compared to other models we used since the model is used without additional training and
lacks domain knowledge. We compared the performance of LightGBM to other models
using R@30. We can see that LightGBM improved the result of our best model (SimCSE)
by ranking predictions of all our models. Comparison of all our models has given below:

Figure 24: Comparison of our models in terms of recall on the test set
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Figure 25: Comparison of our models in terms of mean average precision on the test set

5.2.2 Qualitative Analysis

For the qualitative analysis, we can investigate several reference examples and top-K
predictions from each model.

Reference: ”7. to ensure that personal data are protected from accidental
destruction or loss (availability control),”
SimCSE Meilisearch NLI Qdrant Mean Embeddings
R198 R79 R167 R55 R55
R55 R76 R338 R54 R271
R52 R7 R583 R33 R357
R54 R6 R29 R193 R193
R190 R55 R680 R197 R9

Table 4: Top-5 prediction for di↵erent models on reference example #1. The green
background represents that risk is in the true list of risks. The red background represents
that risk is not one of the true risks.

In the first example, R55 (’physical data being destroyed by natural influences.’) is suc-
cessfully recognized by SimCSE, Meilisearch, Qdrant and Mean Embeddings approach.
Only the natural language inference model fails to predict R55. Qdrant manages to include
R33 (’data retention and deletion requirements not being met.’) in its top-K prediction,
unlike other models. Furthermore, Meilisearch can predict R79 (’continuity measures be-
ing defined for non-critical functions.’) where other models fail to identify it. Meilisearch
finds lexical matches using words such as personal, protect, ensure, data, and accidental,
returns similar references which contain these words and use their corresponding risks
(including R79) as its prediction.
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Figure 26: Similarity matrix between reference example #1 and risk description (R55)
using SimCSE

On the other hand, SimCSE model captures the relation between the reference text and
risk description of R55 with words such as data, destroyed (destruction, loss), natural
(accidental).

Reference: ”’Art. 5 Principles relating to processing of personal data1. Per-
sonal data shall be:(a) processed lawfully ... be able to demonstrate compliance
with, paragraph 1 (’accountability’).’”
SimCSE Meilisearch NLI Qdrant Mean Embeddings
R223 R79 R222 R226 R221
R224 R76 R250 R223 R226
R225 R7 R194 R225 R225
R11 R6 R404 R239 R359
R222 R55 R226 R899 R220

Table 5: Top-5 prediction for di↵erent models on reference example #2. The green
background represents that risk is in the true list of risks. The red background represents
that risk is not one of the true risks.

In the second example, although SimCSE can find the risks R222 (’inaccurate personally
identifiable information being stored and processed.’), R223 (’unnecessary data storage
and archiving cost.’), R224 (’inappropriate use of personally identifiable information.’),
R225 (’excessive collection of personally identifiable information.’), it fails to predict R7
(’the organization violating data privacy legal requirements.’) or R226 (’data being used
for purposes other than the purpose for collection.’) in its top-5 prediction. However,
NLI, Qdrant and Mean Embeddings model include R226 in their top-5 predictions and
Meilisearch manages to find R7 in its prediction.
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6 Conclusion

For this project, we worked on the problem of risk identification which results from unful-
filled legal requirements. We have investigated the relationship between policy statements
and risks from multiple points of view taking into consideration semantic, lexical, and
logical relations. We explored several approaches such as cosine similarity with sentence
transformers, contrastive learning, Meilisearch, natural language inference, recommenda-
tion systems, neural search engine, and mean reference embeddings approach. We chose
our Meilisearch and cosine similarity with TF-IDF vectors as our baselines. SimCSE
which is a contrastive learning framework achieved the best performance among all of our
models due to additional training on the reference dataset and the convenience of working
with a small amount of data. Finally, we combined the relevancy scores of our models and
gave these scores to the LightGBM ranker as inputs to re-rank the risks. As a result, this
learning-to-rank approach has greatly improved final metrics including recall and mean
average precision. In conclusion, we achieved our goal to improve the results from baseline
and explored numerous approaches to tackle the problem of risk identification.

In the future, the natural language inference model should be fine-tuned on the refer-
ence dataset using larger models which would improve the metrics. Data split should be
reconsidered. It should be handled such that each train, validation, and test set include
examples from all risks, and examples should be distributed more appropriately. For hy-
perparameter tuning, the SimCSE model should be experimented with a di↵erent number
of hard negatives and di↵erent temperature coe�cients. LightGBM parameters such as
maximum tree depth and the number of leaves should be tuned to improve the quality of
the final ranking. Relevancy scores from Meilisearch should be received from the internal
scoring mechanism when this feature is implemented. Furthermore, in error analysis, we
observed that domain knowledge improves the total number of correct predictions, hence
we believe this should be incorporated into future approaches as well.
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Appendix

6.1 Recommender System Approach

In this approach we made use of reference-to-reference similarity to predict similarity
scores for various risks in the registry. The approach of Collaborative Filtering via matrix
completion was pursued using the Singular Value Decomposition (SVD) algorithm. The
Surprise Recommender Systems package was used to implement the algorithm. The above

Figure 27: Recall@k: SVD-based Collaborative Filtering

plot demonstrates peculiarly low R@K performance. In examining the reason for this poor
performance, we discovered that the model does not predict a consistent number of risks
per reference as can be observed in the Fig. 28. We note that the model does not take into

Figure 28: Number of Predictions per Reference Statement

consideration the risk attributes and only operates on a matrix of reference-risk similarity
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scores. Moreover, SVD-based matrix completion must fill a matrix of 3259 references by
554 risks, i.e.; 2 million entries while only using scores from some 30k known reference
and risk pairs. Due to this extremely sparse starting matrix coupled with some very high
similarity scores associated with vectors prepared with the GDPR-based FastText model
the resultant scores are an interpolation between a narrow range of values as shown in
fig. 29.

Figure 29: Average Predicted Score per Reference Statement

As most reference-risk pairs receive a very high score regardless of their actual semantic
meaning the resultant model fails to produce any valuable results. These limitations of
the approach as well as the limited data not allowing for a more populated sparse matrix
are the reasons we do not include results from this approach.

6.2 Multilabel classification with basic machine learning algo-
rithms

In this approach, we encoded references using TF-IDF and N-grams and applied basic
machine learning algorithms (Decision Trees, Random Forest, Boosting, and SVM) for the
task of multilabel classification. The best result was achieved by SVM model. However,
this result was below the result of the baseline Meilisearch, therefore we decided not to
include results from this approach.

Multi-Label Models Macro-Precision Macro-Recall
1 KNN Classifier 20.8% 16.1%
2 Decision Tree Classifier 25.6% 24.2% %
3 Bagging Classifier 30.6% 14.7%%
4 Random Forest Classifier 26.2% 7.7% %
5 Gradient Boosting Classifier 31.1% 22.7% %
6 Naive Bayes Classifier 0.0% 0.0% %
7 Support Vector Machine Classifier 36.0% 18.0%%
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6.3 Additional error analysis

Figure 30: Meilisearch: Top-50 failed risks using Meilisearch on the test set

Figure 31: SimCSE: Top-50 failed risks using SimCSE on the test set
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Figure 32: LightGBM: Top-50 failed risks using LightGBM on the test set

Figure 33: Natural Language Inference: Top-50 failed risks using natural language infer-
ence on the test set
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Figure 34: Qdrant Neural Search: Top-50 failed risks using qdrant neural search on the
test set

Figure 35: Mean Reference Embeddings: Top-50 failed risks using mean reference embed-
dings on the test set
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