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Outline

e Background & Problem Definition

e LiDAR Segmentation and Classification
e Extraction of Pole Control Points (PCPs) for matching
e Matching of PCPs and Ground Control Points (GCPs)

e Conclusion

Demonstration of Prototype
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Background (High-Definition 3D Maps)

e Provide HD Maps for highly automated driving

Source: [23]
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Background (LiDAR Data)

( Localization in 6 Dimensions within 10 cm Accuracy

Low Data Footprint (+/~ 120kb per km)
Multi-sensor Compatible \ ‘. Low-cost Compute (ARM Processor)

/ C 4G Connectivity for Real-time Map Building
£

Source: [23]
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Background (LiDAR Data)

Source: [23]
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Background (LiDAR Data)

Source: [23]
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Background (TerraSAR-X GCPs)

e Traffic and Light Pole shows in SAR images as bright isolated points

ST, 08.06.2014 ‘¢

Signal response of a point target (centre peak) in the TerraSAR-X S

image
Source: [22]
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Background (TerraSAR-X GCPs)

e Traffic and Light Pole shows in SAR images as bright isolated points

Signal response of a point target (centre peak) in the TerraSAR-X S

image
Source: [22]
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Problem Definition

Original point cloud
derived from mobile
lidar

Objective:
Matching extracted PCPs (Pole Control Point) with
corresponding GCPs (Ground Control Point)
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Problem Definition

@ w!

Semantic segmentation
of point cloud

Objective:
Matching extracted PCPs (Pole Control Point) with
corresponding GCPs (Ground Control Point)
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Problem Definition

Extract the lights and
compute each of their
pole control point

Objective:
Matching extracted PCPs (Pole Control Point) with
corresponding GCPs (Ground Control Point)
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Problem Definition
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compute each of their
pole control point

Objective:
Matching extracted PCPs (Pole Control Point) with
corresponding GCPs (Ground Control Point)
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Problem Definition

Extract the lights and
compute each of their
pole control point

Objective:
Matching extracted PCPs (Pole Control Point) with
corresponding GCPs (Ground Control Point)
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Problem Definition

Objective:
Matching extracted PCPs (Pole Control Point) with
corresponding GCPs (Ground Control Point)
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Project Plan

23 Apr - 18 May 19 days Literature Review
20 May - 30 May JETECEP Data Exploration
30 May - 14 Jun JEEEFTETCEEEP LiDAR Segmentation & Classification + GCPs Matching Algorithms
28 Jun - 03 U NIEXETENP Geometric Correction

-_ LiDAR Segmentation & Classification +

14 Jun - 18 Jul PCPs Extraction + GCPs Matching Algorithm
12 Jul - 01 Aug JFTTE TP FPrototype SW

24 Apr- 31 Jul Documentation

8 May
Kick-off 5 Aug
inal Presentation
17 Jul
i ing 3
22 May 24 Jun Milestone Meeting 3,
Milestone Meeting 15t Milestone Meeting 2" Submit Report tOITUM
2 Aug
Visit to Airbus
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Project Architecture ccP of Roo

Manually define Deep Learning:
the polygons Pointnet++ = ]
for chunks Chunk (Classification =l Transformation
> Data > for Each Point o » Matrix for Point
(30 meters) L =3 Cloud
Q
RY %) s J
o) o0 = .
3 a &P 22 | 8 2 | RootPoint
Raw Data 3 CBD 3 32 of Light
(las) 3 S 2 = 0, X, Y, 2)
w0 = = = 5 y Yo
Q =
124 = O ©Q
S o
Q S

Points with ( L
X _| Classification
?| Features | for Each Point
3D feature: (.bpf) Machine L or £ach Fo
pyntcloud, pdal Learning:
2D feature: Random Forest,
KDTree SVM, etc.
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Preprocessing Pipeline

Point Clouds Complexity

Dataset Name Number of points Environment

086b_classified 9,175,355 Urbanized residential area
Werk2_classified_part1 2,044,148 Urbanized industrial area
Werk2_classified_part2 22,043,528 Urbanized industrial area
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Classic Machine Learning Based on Features Extraction

e Overview of the methodology

Point Sampling Neighborhood Recovery Feature Extraction Classification
Original Sphere Local 3D Shape SVM
Data (R=1m) Features Classifier
Voxel-Grid- Cylinder Geometric 3D CART
Filtered Data (R=1m) Properties Classifier
— — — — -
Sphere Local 2D Shape RF
(k=50) Features Classifier
Sphere Geometric 20
(optimal k) Properties

Classic Machine learning architecture for point cloud segmentation
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Classic Machine Learning Based
on Features Extraction

LI N

e 3D Feature Selection

1. Features of neighbor generated with KD-Tree 4

10
11
12
13

14

Feature Name

KDistance
LocalReachabilityDistance

LocalOutlierFactor

NNDistance

Eigenvalue2
Eigenvaluel
Eigenvalue0
Rank
NormalX
NormalY
NormalZ
Curvature
RadialDensity
Coplanar
Linearity
Planarity
Scattering
Omnivariance
Anisotropy
Eigentropy
Eigen_Sum
Curvature_Change
density_2d
el_2d
e2_2d

Z

Description of Feature

The Euclidean distance to a point’s §-th nearest neighbour
The inverse of the mean of all reachability distances for a
neighbourhood of points

The mean of all LocalReachabilityDistance values for the
neighbourhood

Similar to KDistance /
The largest Eigenvalue based on its 8-nearest neighbours in
3D.

The second-largest Eigenvalue based on its 8-nearest
neighbours in 3D.

The smallest Eigenvalue based on its 8-nearest neighbors in
3D.

Computed by SVD with 8-nearest neighbours. Point sets with
rank 1 correspond to linear features, while rank 2 correspond
to planar features and rank 3 corresponds to a full 3D feature.
The normal is taken as the eigenvector corresponding to the
smallest eigenvalue.

Smallest eigenvalue divided by the sum of all three
eigenvalues.

The density of points in a sphere of a given radius. Here the
radius is 2.

Technique to performs a fast and robust octree-based
segmentation of approximately coplanar clusters of samples.
[16]

(Eigenvalue0 - Eigenvaluel) / Eigenvalue2

(Eigenvaluel - Eigenvalue0) / Eigenvalue2

Eigenvalue0 / Eigenvalue2

(Eigenvalue0* Eigenvaluel* Eigenvalue2)**(1/3)
(Eigenvalue?2 - Eigenvalue0) / Eigenvalue2

-(Eigenvalue0 * log(Eigenvalue0) - Eigenvaluel *
log(Eigenvaluel) - Eigenvalue2 * log(Eigenvalue2)

The sum of all three eigenvalues

Eigenvalue0 / (Eigenvalue0 + Eigenvaluel + Eigenvalue2)
The density of points, which are projected to X-Y plane, in a
circle of a given radius. Here the radius is 20 cm.

The smallest Eigenvalue based on its neighbours within 20
cm in 2D.

The largest Eigenvalue based on its neighbours within 20 cm
in 2D.

Coordinate in Z-axis.
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Classic Machine Learning Based
on Features Extraction

LI N

~

e 3D Feature Selection

1. Features of neighbor generated with KD-Tree 4

2. Eigen-features based on the neighbors =

13

14

<

Feature Name
KDistance

LocalReachabilityDistance

LocalOutlierFactor

NNDistance

Eigenvalue2
Eigenvaluel
Eigenvalue0
Rank
NormalX

NormalY
NormalZ

Curvature
RadialDensity
Coplanar
Linearity
Planarity
Scattering
Omnivariance
Anisotropy
Eigentropy
Eigen_Sum
Curvature_Change
density_2d
el_2d
e2_2d

Z

Description of Feature

The Euclidean distance to a point’s 8-th nearest neighbour
The inverse of the mean of all reachability distances for a

neighbourhood of points

The mean of all LocalReachabilityDistance values for the

neighbourhood

Similar to KDistance

3D. i
The second-largest Eigenvalue based on its 8-nearest
neighbours in 3D.

The smallest Eigenvalue based on its 8-nearest neighbors in
3D.

Computed by SVD with 8-nearest neighbours. Point sets with
rank 1 correspond to linear features, while rank 2 correspond
to planar features and rank 3 corresponds to a full 3D feature.
The normal is taken as the eigenvector corresponding to the
smallest eigenvalue. 4
Smallest eigenvalue divided by the sum of all three
eigenvalues.

The density of points in a sphere of a given radius. Here the
radius is 2.

Technique to performs a fast and robust octree-based
segmentation of approximately coplanar clusters of samples.
[16]

(Eigenvalue0 - Eigenvaluel) / Eigenvalue2

(Eigenvaluel - Eigenvalue0) / Eigenvalue2

Eigenvalue0 / Eigenvalue2

(Eigenvalue0* Eigenvaluel* Eigenvalue2)**(1/3)
(Eigenvalue?2 - Eigenvalue0) / Eigenvalue2

-(Eigenvalue0 * log(Eigenvalue0) - Eigenvaluel *
log(Eigenvaluel) - Eigenvalue2 * log(Eigenvalue2)

The sum of all three eigenvalues

Eigenvalue0 / (Eigenvalue0 + Eigenvaluel + Eigenvalue2)
The density of points, which are projected to X-Y plane, in a
circle of a given radius. Here the radius is 20 cm.

The smallest Eigenvalue based on its neighbours within 20

cm in 2D.

The largest Eigenvalue based on its neighbours within 20 cm
in 2D.

Coordinate in Z-axis.
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Classic Machine Learning Based
on Features Extraction

e 3D Feature Selection

1. Features of neighbor generated with KD-Tree
2. Eigen-features based on the neighbors

3. Geometrical features based on Eigen-feature

o

LI N

6

~

10
11
12
13

14

Feature Name
KDistance
LocalReachabilityDistance

LocalOutlierFactor

NNDistance
Eigenvalue2

Eigenvaluel
Eigenvalue0
Rank
NormalX

NormalY
NormalZ

. Curvature
RadialDensity

Coplanar

1

!

]

]

]

]

|

| Linearity
| Planarity

| Scattering

1 Omnivariance
| Anisotropy

| Eigentropy

]

\

\ Eigen_Sum

density_2d
el_2d
e2.2d

Z

Description of Feature

The Euclidean distance to a point’s 8-th nearest neighbour
The inverse of the mean of all reachability distances for a
neighbourhood of points

The mean of all LocalReachabilityDistance values for the
neighbourhood

Similar to KDistance

The largest Eigenvalue based on its 8-nearest neighbours in
3D.

The second-largest Eigenvalue based on its 8-nearest
neighbours in 3D.

The smallest Eigenvalue based on its 8-nearest neighbors in
3D.

Computed by SVD with 8-nearest neighbours. Point sets with
rank 1 correspond to linear features, while rank 2 correspond
to planar features and rank 3 corresponds to a full 3D feature.
The normal is taken as the eigenvector corresponding to the
smallest eigenvalue.

Smallest cigenvalue divided by the sum of all three. ™~
eigenvalues.

The density of points in a sphere of a given radius. Here the
radius is 2.

Technique to performs a fast and robust octree-based
segmentation of approximately coplanar clusters of samples.
[16]

(Eigenvalue0 - Eigenvaluel) / Eigenvalue2

(Eigenvaluel - Eigenvalue0) / Eigenvalue2

Eigenvalue0 / Eigenvalue2

(Eigenvalue0* Eigenvaluel* Eigenvalue2)**(1/3)
(Eigenvalue?2 - Eigenvalue0) / Eigenvalue2

-(Eigenvalue0 * log(Eigenvalue0) - Eigenvaluel *
log(Eigenvaluel) - Eigenvalue2 * log(Eigenvalue2)

The sum of all three eigenvalues

The density of points, which are projected to X-Y plane, in a
circle of a given radius. Here the radius is 20 cm.

The smallest Eigenvalue based on its neighbours within 20
cm in 2D.

The largest Eigenvalue based on its neighbours within 20 cm
in 2D.

Coordinate in Z-axis.

!
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Classic Machine Learning Based
on Features Extraction

LI N
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e 3D Feature Selection

--- 1. Features of neighbor generated with KD-Tree 4

10
11
12

13

14

15

© A o
S0 e 16

O . . . 17
PDAL is a library used to process point
->@. y process p 18

o d I cloud data. it is based on C/C++, so the 19
@ o Q- p 0 process is much faster than python. 20
21

22

23

Feature Name
KDistance
LocalReachabilityDistance

LocalOutlierFactor

NNDistance
Eigenvalue2

Eigenvaluel
Eigenvalue0
Rank
NormalX
NormalY
NormalZ
Curvature
RadialDensity
Coplanar
Linearity
Planarity
Scattering
Omnivariance
Anisotropy
Eigentropy
Eigen_Sum
Curvature_Change
density_2d
el_2d
e2_2d

Z

Description of Feature

The Euclidean distance to a point’s 8-th nearest neighbour
The inverse of the mean of all reachability distances for a
neighbourhood of points

The mean of all LocalReachabilityDistance values for the
neighbourhood

Similar to KDistance

The largest Eigenvalue based on its 8-nearest neighbours in
3D.

The second-largest Eigenvalue based on its 8-nearest
neighbours in 3D.

The smallest Eigenvalue based on its 8-nearest neighbors in
3D.

Computed by SVD with 8-nearest neighbours. Point sets with
rank 1 correspond to linear features, while rank 2 correspond
to planar features and rank 3 corresponds to a full 3D feature.
The normal is taken as the eigenvector corresponding to the
smallest eigenvalue.

Smallest eigenvalue divided by the sum of all three
eigenvalues.

The density of points in a sphere of a given radius. Here the
radius is 2.

Technique to performs a fast and robust octree-based
segmentation of approximately coplanar clusters of samples.
[16]

(Eigenvalue0 - Eigenvaluel) / Eigenvalue2

(Eigenvaluel - Eigenvalue0) / Eigenvalue2

Eigenvalue0 / Eigenvalue2

(Eigenvalue0* Eigenvaluel* Eigenvalue2)**(1/3)
(Eigenvalue?2 - Eigenvalue0) / Eigenvalue2

-(Eigenvalue0 * log(Eigenvalue0) - Eigenvaluel *
log(Eigenvaluel) - Eigenvalue2 * log(Eigenvalue2)

The sum of all three eigenvalues

Eigenvalue0 / (Eigenvalue0 + Eigenvaluel + Eigenvalue2)
The density of points, which are projected to X-Y plane, in a
circle of a given radius. Here the radius is 20 cm.

The smallest Eigenvalue based on its neighbours within 20
cm in 2D.

The largest Eigenvalue based on its neighbours within 20 cm
in 2D.

Coordinate in Z-axis.
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Classic Machine Learning Based
on Features Extraction

e 3D Feature Selection

--- 1. Features of neighbor generated with KD-Tree

--- 2. Eigen-features based on the neighbors

-- 3. Geometrical features based on Eigen-feature

—F——————— - ==

PDAL is a library used to process point
cloud data. it is based on C/C++, so the
process is much faster than python.

Computed as DataFrame with Pandas

o
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Feature Name
KDistance
LocalReachabilityDistance

LocalOutlierFactor

NNDistance
Eigenvalue2

Eigenvaluel
Eigenvalue0
Rank
NormalX
NormalY
NormalZ
Curvature
RadialDensity
Coplanar
Linearity
Planarity
Scattering
Omnivariance
Anisotropy
Eigentropy
Eigen_Sum
Curvature_Change
density_2d
el_2d
e2_2d

Z

Description of Feature

The Euclidean distance to a point’s 8-th nearest neighbour
The inverse of the mean of all reachability distances for a
neighbourhood of points

The mean of all LocalReachabilityDistance values for the
neighbourhood

Similar to KDistance

The largest Eigenvalue based on its 8-nearest neighbours in
3D.

The second-largest Eigenvalue based on its 8-nearest
neighbours in 3D.

The smallest Eigenvalue based on its 8-nearest neighbors in
3D.

Computed by SVD with 8-nearest neighbours. Point sets with
rank 1 correspond to linear features, while rank 2 correspond
to planar features and rank 3 corresponds to a full 3D feature.
The normal is taken as the eigenvector corresponding to the
smallest eigenvalue.

Smallest eigenvalue divided by the sum of all three
eigenvalues.

The density of points in a sphere of a given radius. Here the
radius is 2.

Technique to performs a fast and robust octree-based
segmentation of approximately coplanar clusters of samples.
[16]

(Eigenvalue0 - Eigenvaluel) / Eigenvalue2

(Eigenvaluel - Eigenvalue0) / Eigenvalue2

Eigenvalue0 / Eigenvalue2

(Eigenvalue0* Eigenvaluel* Eigenvalue2)**(1/3)
(Eigenvalue?2 - Eigenvalue0) / Eigenvalue2

-(Eigenvalue0 * log(Eigenvalue0) - Eigenvaluel *
log(Eigenvaluel) - Eigenvalue2 * log(Eigenvalue2)

The sum of all three eigenvalues

Eigenvalue0 / (Eigenvalue0 + Eigenvaluel + Eigenvalue2)
The density of points, which are projected to X-Y plane, in a
circle of a given radius. Here the radius is 20 cm.

The smallest Eigenvalue based on its neighbours within 20
cm in 2D.

The largest Eigenvalue based on its neighbours within 20 cm
in 2D.

Coordinate in Z-axis.
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Feature Name Description of Feature
1 KDistance The Euclidean distance to a point’s 8-th nearest neighbour
LocalReachabilityDistance The inverse of the mean of all reachability distances for a
neighbourhood of points

o

. . . 3 LocalOutlierFactor The mean of all LocalReachabilityDistance values for the
Classic Machine Learning Based o
4 NNDistance Similar to KDistance
S Eigenvalue2 The largest Eigenvalue based on its 8-nearest neighbours in

L]
O n F e at u reS EXt ra Ct I O n 6 Eigenvaluel %?e second-largest Eigenvalue based on its 8-nearest

neighbours in 3D.

7 Eigenvalue0 The smallest Eigenvalue based on its 8-nearest neighbors in
H 3D.
b 2 D Featu re Se I eCtlon 8 Rank Computed by SVD with 8-nearest neighbours. Point sets with
rank 1 correspond to linear features, while rank 2 correspond
Observation: to planar features and rank 3 corresponds to a full 3D feature.
T . . . . 9 NormalX The normal is taken as the eigenvector corresponding to the
Artificial objects are often vertically distributed. 10 Normaly Astrprinrin sl e
= H H H H 11 NormalZ
=> Thelr denSIty IS hlgher than Others on 2D plane 12 Curvature Smallest eigenvalue divided by the sum of all three
eigenvalues.
ASSU m ption: 13 RadialDensity rl;zlel:;e:;s;ty of points in a sphere of a given radius. Here the
Adding 2D features could improve the prediction. 14 Coplanar Technique to performs a fast and robust octree-based
segmentation of approximately coplanar clusters of samples.
[16]
15 Linearity (Eigenvalue0 - Eigenvaluel) / Eigenvalue2
16 Planarity (Eigenvaluel - Eigenvalue0) / Eigenvalue2
\ 17 Scattering Eigenvalue0 / Eigenvalue2
18 Omnivariance (Eigenvalue0* Eigenvaluel* Eigenvalue2)**(1/3)
O \ 19 Anisotropy (Eigenvalue?2 - Eigenvalue0) / Eigenvalue2
|Igh t - 20 Eigentropy -(Eigenvalue0 * log(Eigenvalue0) - Eigenvaluel *
log(Eigenvaluel) - Eigenvalue2 * log(Eigenvalue2)
Eigen_Sum The sum of all three eigenvalues
a 22 _ Curvature Change _ _ _ FEigenvalueO / (Figenvalue0 + Eigenvaluel + Figenvalue)_
23 density_2d The density of points. which are projected to X-Y plane, ina
! circle of a given radius. Here the radius is 20 cm. !
24 | el 2d The smallest Eigenvalue based on its neighbours within20 1
| cm in 2D. |
s 25 | e2_2d The largest Eigenvalue based on its neighbours within 20 cm |
: in 2D. !
Coordinate in Z-axis. /
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Final Result of ML Algorithm (Comparison)

Normalized confusion matrix Normalized confusion matrix
predict score is: ©.8357713048923584 predict score is: ©.9144521251694725
Normalized confusion matrix Normalized confusion matrix
08
gound 000 000 024 000 000 001 003 ground 002 000 000 012 000 000 001 001
vegetation 000 000 001 000 000 002 001 vegetation { 0.05 000 000 000 000 000 002 000
tuiding{ 025 012 023 000 004 000 000 009 027 tuilding | 014 oasﬂ 000 002 000 000 011 010
06
noise { 016 015 000 | 037 001 000 000 027 003 mise { 022 004 000 000 000 025 001
z z
§ mad{ 006 000 000 000 2 mad{ 004 000 000 000 000 000 000 000
2 H
light { 006 010 000 000 o4 ught { 001 005 000 000 000 000 002 001
agnal{ 010 012 002 000 ggnal{ 008 011 002 000 000 005 u 014 009
whice { 017 015 001 002 wehicle { 003 010 001 002 001 000 000
02
fence { 006 003 000 000 fence { 003 001 000 000 002 000 000
$ » & $ & O ¢ & S ¢ ¢
K S S S & & o
Q:s’ e\\b & a’> &Q‘& ‘9;& & A EL «
Predicted label o0 Predicted label
Prediction result from the model trained Prediction result from the model trained

without 2D features with 2D features

04

02

—L00

TUM-DI-Lab | 3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data

1. Overall accuracy is improved
from 83.6% to 91.4%.

2. The prediction precision for each
class is improved, especially 31%
better for building and 13% better
for light.




Final Result of ML Algorithm (Part1, industrial area)

{

; ® ground ground
i @® vegetation ! — @® vegetation
@® building _ : @® building

road

Ground Truth

Prediction

1. Overall accuracy is 91.4%.

2. Precision of class “light” is 91%
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Final Result of ML Algorithm (086b, residential

Normalized confusion matrix

predict score is: ©.858173927252852

Normalized confusion matrix

pavement -JERURES 0.00 001 0.04 021 0.00 0.00 0.00
vegetation 0.00
building 000
- other 0.00
2
g |
v
2
¥ road&zebra 0.00
light 0.00
vehicle 000
person 0.09
&
&
£
¢

Predicted label

F04

0.2

pavement
vegetation
building
other

Prediction

pavement
vegetation
building

other

Ground Truth
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Final Result of ML Algorithm (086b)

1. The overall accuracy for 086b is 85.8%, about
6% less than the accuracy of Part1.

2. Many points of “pavement” is wrongly
predicted as road, and it's understandable.

3. Precision of “light” is lower in 086b.

Possible reason: there are many trees and the
light may sometime hided in the branches of the
trees.

Points assigned to wrong classes are shown in blue
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PointNet++

e Unordered point set as input
e Custom partitioning
e PointNet on each partition

skip link concatenation

—_— > —

—

172]
[}
sampling& = pointnet ~ sampling&  pointnet 5
grouping grouping =
w
\& I J &=
' Y o
set abstraction set abstraction

pointnet fully connected layers
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Data preprocessing for PointNet++

Cut scenery into
chunks and center
each chunk

%
(0,0) new origin
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Final result of PointNet++: Chunk of “086b_classified”

overall accuracy: 87%
average loU (ignoring) label ‘other’: 47%

Ground Truth Prediction

Other
Pavement
Road
Zebra
Vegetation ;” 2
2 Light

> Vehicule

®  Person

Semaforo

Building
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Final result of PointNet++: Chunk of “086b_classified”

overall accuracy: 87%
average loU (ignoring) label ‘other’: 47%

0BG

082

semaforo
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Final result of PointNet++: Chunk of “086b_classified”

overall accuracy: 87%
average loU (ignoring) label ‘other’: 47%

o

zebra
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Final result of PointNet++: Chunk of “086b_classified”

overall accuracy: 87%
average loU (ignoring) label ‘other’: 47%

person
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Extraction of light poles: 1st approach

e calculate k clusters on the predicted points as light with KMean
e select only the clusters with the largest number of points
e calculate the intersection over union (loU) of those selected clusters on the ground truth
e iterate for different numbers of clusters k chunk_31 after post processing
e pick the cluster with the highest loU
chunk_31 before post processing 41 x
15{ * predicted points as light 0 b
- ground truth points as light a =5 1
10 1 ‘ %x
] 5{ X
5 ‘ » )
o{ eostifilogh’ w . tuln
_;l' E »
!"ﬂ "o olfe o
10 - ¢ ~ 8 » predicted points as light
B - » 1 g
- » ‘ « ground truth points as light
-15 ..~'~ ® extracted light points for ground truth
20] g & ..- - -9 ® extracted light points for prediction
15 -0 -5 0 : 015 -15 -10 -5 0
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Extraction of light poles: final approach

Instead of Kmean, we use DBSCAN: clustering done with input based on distance between points and not number
of cluster => As the number of cluster varies a lot from a scene to another, DBSCAN is more appropriate.

Parameters: for ground truth, t=0.003, min samples=10, for prediction t=0.006, min samples=10

086b after post processing

» predicted points as light ‘
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Werk2 part1 after postprocessing
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Matching of Mobile Mapping Data to GCPs

e Goal: Match the base points of poles extracted from the segmentation to
Ground Control Points derived from satellite data

local GCPs
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Point Set Registration

e Match source set to target set
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Source: [14]
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Matching undistorted data

e GPS mostly accurate during acquisition: Inaccuracy as slight “noise”
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Rigid Point Set Registration: ICP

Steps:

1. For each point in source set, compute closest point in target set
2. Compute rigid transformation that minimizes distance

Source: [9]
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Rigid Point Set Registration: ICP

Steps:

1. For each point in source set, compute closest point in target set
2. Compute rigid transformation that minimizes distance

e Computationally simple
e Converges monotonically to closest local minimum

Source: [9]
TUM-DI-Lab | 3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data




Rigid Point Set Registration: ICP

Steps:

1. For each point in source set, compute closest point in target set
2. Compute rigid transformation that minimizes distance

e Computationally simple
e Converges monotonically to closest local minimum

e Provides correct results for non-distorted data
e Nearest Neighbour matching gives same results

Source: [9]
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Non-rigid Point Set Reglstratlon GLMDTPS

Initial Pose GLMDTPS TPS-RPM GMMREG
4
&
14 dﬂj
L8, 2 8

Source: [14]



Testing: GLMDTPS

e Incorrect results for non-distorted data

Better transformation given only matches



ldea: lterated GLMDTPS

Steps:

1. Nearest Neighbour Matching
2. GLMDTPS on matches
e Reduce matching radius in later iterations

Performance:

e Correct matches
e Better transformation than ICP




Results: Iterated GLMDTPS

On non-distorted data:

ID oD ND

5 0.551 0.311
6 0.565 0.152
7 0.744 0.0516
9 0.741 0.231
10 0.421 0.045
24 0.613 0.163
27 0.513 0.155
avg 0.592 0.158

Distances in meter




Software development

Creation of a software to integrate all algorithms
together:
-  Classification:
- by Random Forest: feature extraction and
classification
- by PointNet++: classification of each
chunks
- light extraction
- matching
- deformation

Airbus project

el 3y

SEGMENTATION

«  other
pavement

EXTRACTED LIGHT POINT CLOUD

A €d $Q=
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- building
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Conclusion

Segmentation & Classification

e Models trained on urbanized area in Germany => probably not robust to a

different type of data
> To improve the ML algorithm, training with data from different environment

will be necessary.
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Conclusion

e Random Forest algorithm is robust to the size of the input.

e Machine learning (ML) algorithm needs to extract features that is time

consuming

PointNet++ algorithm is much faster

> The processing time for ML algorithm can be decreased by supporting
parallelization.
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Conclusion

Light Pole Extraction

e Improve the fine-tuning for clustering

e Create or find a Machine Learning or Deep Learning approach for clustering
and pole extraction

> include this architecture to the segmentation approach
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Conclusion

Matching

e Iterated algorithm that
o produces correct matches in test cases
o robust to high outlier-ratio
o provides non-rigid transformation as base for correction of LiDAR data

e Outlook:
o Improve transformation
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Thank You!
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Backup Segmentation methods

Synthetic representation of the segmentation methods
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Backup Extracted Feature-1

Feature Name Description of Feature

KDistance The Euclidean distance to a point’s 8-th nearest neighbour
LocalReachabilityDistance The inverse of the mean of all reachability distances for a neighbourhood of points
LocalOutlierFactor The mean of all LocalReachabilityDistance values for the neighbourhood

NNDistance Similar to KDistance

Eigenvalue2  The largest Eigenvalue based on its 8-nearest neighbours in 3D.

Eigenvaluel  The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.

EigenvalueO  The smallest Eigenvalue based on its 8-nearest neighbors in 3D.

Rank Computed by SVD with 8-nearest neighbours. Point sets with rank 1 correspond to linear features, while rank 2
correspond to planar

features and rank 3 corresponds to a full 3D feature.

O~NO UL WNPF

9 NormalX The normal is taken as the eigenvector corresponding to the smallest eigenvalue.

10 NormalY

11 Normalz

12 Curvature Smallest eigenvalue divided by the sum of all three eigenvalues.

13 RadialDensity The density of points in a sphere of a given radius. Here the radius is 2.

14 Coplanar Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples.
[16]
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Backup Extracted Feature-2

15 Linearity (EigenvalueO - Eigenvaluel) / Eigenvalue2

16 Planarity (Eigenvaluel - EigenvalueO) / Eigenvalue2

17 Scattering EigenvalueO / Eigenvalue2

18 Omnivariance (EigenvalueO* Eigenvaluel* Eigenvalue2)**(1/3)

19 Anisotropy (Eigenvalue?2 - EigenvalueO) / Eigenvalue2

20 Eigentropy -(EigenvalueO * log(Eigenvalue0) - Eigenvaluel * log(Eigenvaluel) - Eigenvalue2 * log(Eigenvalue2)
21 Eigen_Sum The sum of all three eigenvalues

22 Curvature_Change EigenvalueO / (EigenvalueO + Eigenvaluel + Eigenvalue2)

23 density_2d The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.
24 el 2d The smallest Eigenvalue based on its neighbours within 20 cm in 2D.

25 e2_2d The largest Eigenvalue based on its neighbours within 20 cm in 2D.

26 Z Coordinate in Z-axis.
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Comparison of Point Cloud file format

TYPE EXTENSION(S) DESCRIPTION | READ = WRITE BINARY/ASCII POINT MESH(ES) OTHER FEATURES
3 CLOUD(S)

BIN .bin CloudCompare own X X binary >1 >1 >1 - Normals, colors (RGB), scalar fields (>1),
e format . labels, viewports, display options, etc.
ASCII .asc,.txt,.xyz,.neu,.pts ASCII point cloud file X X ASCII 1 0 0 Normals, colors (RGB), scalar fields (all)

(X,Y,Z,etc.) |
LAS las ASPRS lidar point clouds | X X binary 1 0 0 Colors (RGB) and various scalar fields
| | | (see LAS 1.4 specifications)
ES7 .e57 ASTM E57 file format X X mixed >1 0 Calibrated | Normals, colors (RGB or 1), scalar field
picture(s) (intensity)
PCD .pcd Point Cloud X X binary >1 0 Colors (RGB), normals, scalar fields (>1)
Library format
PLY ply Stanford 3D geometry X X both 1 1 0 Normals, colors (RGB or I}, one ore
format (cloud or mesh) | several scalar fields, a single texture
0BJ .obj Wavefront mesh X X ASCII 1 >1 Polyline(s) Normals, materials and textures
T e T R i Fare % B TT TR T ek, colors (RGBT, sealar FeldiS BT
(triangular mesh or cloud | !
only)
STL .stl STereolithography file X X ASCII 0 1 0 Normals
format(mesh)
OFF .off Object File X X ASCIl 0 1 0 0
Format (mesh) | i
FBX fbx Autodesk (Filmbox) File X X ASCIl or BINARY 0 >1 0 Normals, colors (RGB), materials and
Format | textures
DXF .dxf Autocad DXF format X X ASCII >1 >1 polyline(s) Normals, colors (RGB)
SHP .shp ESRI Shape file format X X binary >1 0 Polyline(s), | Scalar fields (1 per entity)
polygon(s), !
contour |
plot(s), etc. |
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[1] FILE I/O - CloudCompareWiki", Cloudcompare.org, 2019. [Online]. Available: https://www.cloudcompare.org/doc/wiki/index.php?ti




Point Set Registration
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Case 2: Matching distorted data

e Loss of GPS signal during acquisition: possibly non-linear distortion
e Approach: Non-rigid point set registration
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