

Final presentation

Authors	Louise Loesch, Islam Mansour, Magdalena Reich, Xianbin Xie
Mentor(s)	Dr. Wolfgang Koppe, Tatjana Bürgmann (Airbus Defence and Space GmbH)
Co-Mentor	Laure Vuaille
Project lead	Dr. Ricardo Acevedo Cabra (Department of Mathematics)
Supervisor	Prof. Dr. Massimo Fornasier (Department of Mathematics)

Team Members:

Louise Loesch Background: Computer vision and & Deep Learning Study: Informatics

Islam Mansour Background: Space & Automotive Engineering Study: Mathematics & Remote Sensing

Magdalena Reich Background: Optimization & Operations Research Study: Mathematics

Xianbin Xie Background: Urban Planning &

Cartography **Study**: Urbanism

Outline

• Background & Problem Definition

- LiDAR Segmentation and Classification
- Extraction of Pole Control Points (PCPs) for matching
- Matching of PCPs and Ground Control Points (GCPs)

- Conclusion
- Demonstration of Prototype

Background (High-Definition 3D Maps)

• Provide HD Maps for highly automated driving

Source: [23]

Background (LiDAR Data)

Source: [23]

Background (LiDAR Data)

Source: [23]

Background (LiDAR Data)

Source: [23]

Background (TerraSAR-X GCPs)

• Traffic and Light Pole shows in SAR images as bright isolated points

Signal response of a point target (centre peak) in the TerraSAR-X ST image

Source: [22]

Background (TerraSAR-X GCPs)

• Traffic and Light Pole shows in SAR images as bright isolated points

Signal response of a point target (centre peak) in the TerraSAR-X ST image

Source: [22]

Objective: Matching extracted PCPs (Pole Control Point) with corresponding GCPs (Ground Control Point)

TUM-DI-Lab | 3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data

10

Objective: Matching extracted PCPs (Pole Control Point) with corresponding GCPs (Ground Control Point)

Objective: Matching extracted PCPs (Pole Control Point) with corresponding GCPs (Ground Control Point)

Objective: Matching extracted PCPs (Pole Control Point) with corresponding GCPs (Ground Control Point)

Objective: Matching extracted PCPs (Pole Control Point) with corresponding GCPs (Ground Control Point)

Objective: Matching extracted PCPs (Pole Control Point) with corresponding GCPs (Ground Control Point)

Project Plan

Preprocessing Pipeline

Point Clouds Complexity

Dataset Name	Number of points	Environment		
086b_classified	9,175,355	Urbanized residential area		
Werk2_classified_part1	2,044,148	Urbanized industrial area		
Werk2_classified_part2	22,043,528	Urbanized industrial area		

• Overview of the methodology

Classic Machine learning architecture for point cloud segmentation

- 3D Feature Selection
 - 1. Features of neighbor generated with KD-Tree

	Feature Name	Description of Feature
1	KDistance	The Euclidean distance to a point's 8-th nearest neighbour
2	LocalReachabilityDistance	The inverse of the mean of all reachability distances for a
		neighbourhood of points
3	LocalOutlierFactor	The mean of all LocalReachabilityDistance values for the
		neighbourhood
4	NNDistance	Similar to KDistance
5	Eigenvalue2	The largest Eigenvalue based on its 8-nearest neighbours in 3D.
6	Eigenvalue1	The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.
7	Eigenvalue0	The smallest Eigenvalue based on its 8-nearest neighbors in 3D.
8	Rank	Computed by SVD with 8-nearest neighbours. Point sets with
		rank 1 correspond to linear features, while rank 2 correspond
		to planar features and rank 3 corresponds to a full 3D feature.
9	NormalX	The normal is taken as the eigenvector corresponding to the
10	NormalY	smallest eigenvalue.
11	NormalZ	
12	Curvature	Smallest eigenvalue divided by the sum of all three eigenvalues.
13	RadialDensity	The density of points in a sphere of a given radius. Here the radius is 2.
14	Coplanar	Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples. [16]
15	Linearity	(Eigenvalue0 - Eigenvalue1) / Eigenvalue2
16	Planarity	(Eigenvalue1 - Eigenvalue0) / Eigenvalue2
17	Scattering	Eigenvalue0 / Eigenvalue2
18	Omnivariance	(Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3)
19	Anisotropy	(Eigenvalue2 - Eigenvalue0) / Eigenvalue2
20	Eigentropy	-(Eigenvalue0 * log(Eigenvalue0) - Eigenvalue1 * log(Eigenvalue1) - Eigenvalue2 * log(Eigenvalue2)
21	Eigen_Sum	The sum of all three eigenvalues
22	Curvature_Change	Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2)
23	density_2d	The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.
24	e1_2d	The smallest Eigenvalue based on its neighbours within 20 cm in 2D.
25	e2_2d	The largest Eigenvalue based on its neighbours within 20 cm in 2D.
26	Z	Coordinate in Z-axis.

- 3D Feature Selection
 - 1. Features of neighbor generated with KD-Tree
 - 2. Eigen-features based on the neighbors

	Feature Name	Description of Feature
1	KDistance	The Euclidean distance to a point's 8-th nearest neighbour
2	LocalReachabilityDistance	The inverse of the mean of all reachability distances for a neighbourhood of points
3	LocalOutlierFactor	The mean of all LocalReachabilityDistance values for the neighbourhood
4	NNDistance	Similar to KDistance
5	Eigenvalue2	The largest Eigenvalue based on its 8-nearest neighbours in 3D.
6	Eigenvalue1	The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.
7	Eigenvalue0	The smallest Eigenvalue based on its 8-nearest neighbors in 3D.
8	Rank	Computed by SVD with 8-nearest neighbours. Point sets with rank 1 correspond to linear features, while rank 2 correspond to planar features and rank 3 corresponds to a full 3D feature.
9	NormalX	The normal is taken as the eigenvector corresponding to the
10	NormalY	smallest eigenvalue.
11	NormalZ	/
12	Curvature	Smallest eigenvalue divided by the sum of all three eigenvalues.
13	RadialDensity	The density of points in a sphere of a given radius. Here the radius is 2.
14	Coplanar	Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples. [16]
15	Linearity	(Eigenvalue0 - Eigenvalue1) / Eigenvalue2
16	Planarity	(Eigenvalue1 - Eigenvalue0) / Eigenvalue2
17	Scattering	Eigenvalue0 / Eigenvalue2
18	Omnivariance	(Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3)
19	Anisotropy	(Eigenvalue2 - Eigenvalue0) / Eigenvalue2
20	Eigentropy	-(Eigenvalue0 * log(Eigenvalue0) - Eigenvalue1 * log(Eigenvalue1) - Eigenvalue2 * log(Eigenvalue2)
21	Eigen_Sum	The sum of all three eigenvalues
22	Curvature_Change	Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2)
23	density_2d	The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.
24	e1_2d	The smallest Eigenvalue based on its neighbours within 20 cm in 2D.
25	e2_2d	The largest Eigenvalue based on its neighbours within 20 cm in 2D.
26	Ζ	Coordinate in Z-axis.

- 3D Feature Selection
 - 1. Features of neighbor generated with KD-Tree
 - 2. Eigen-features based on the neighbors
 - 3. Geometrical features based on Eigen-feature

	Feature Name	Description of Feature
1	KDistance	The Euclidean distance to a point's 8-th nearest neighbour
2	LocalReachabilityDistance	The inverse of the mean of all reachability distances for a neighbourhood of points
3	LocalOutlierFactor	The mean of all LocalReachabilityDistance values for the neighbourhood
4	NNDistance	Similar to KDistance
5	Eigenvalue2	The largest Eigenvalue based on its 8-nearest neighbours in 3D.
6	Eigenvalue1	The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.
7	Eigenvalue0	The smallest Eigenvalue based on its 8-nearest neighbors in 3D.
8	Rank	Computed by SVD with 8-nearest neighbours. Point sets with rank 1 correspond to linear features, while rank 2 correspond to planar features and rank 3 corresponds to a full 3D feature.
9	NormalX	The normal is taken as the eigenvector corresponding to the
10	NormalY	smallest eigenvalue.
11	NormalZ	
12	Curvature	Smallest eigenvalue divided by the sum of all three eigenvalues.
13	RadialDensity	The density of points in a sphere of a given radius. Here the radius is 2.
14	Coplanar	Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples. [16]
15	Linearity	(Eigenvalue0 - Eigenvalue1) / Eigenvalue2
16	Planarity	(Eigenvalue1 - Eigenvalue0) / Eigenvalue2
17	Scattering	Eigenvalue0 / Eigenvalue2
18	Omnivariance	(Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3)
19	Anisotropy	(Eigenvalue2 - Eigenvalue0) / Eigenvalue2
20	Eigentropy	-(Eigenvalue0 * log(Eigenvalue0) - Eigenvalue1 * log(Eigenvalue1) - Eigenvalue2 * log(Eigenvalue2)
21	Eigen_Sum	The sum of all three eigenvalues
22	Curvature_Change	Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2)
23	density_2d	The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.
24	e1_2d	The smallest Eigenvalue based on its neighbours within 20 cm in 2D.
25	e2_2d	The largest Eigenvalue based on its neighbours within 20 cm in 2D.
26	Z	Coordinate in Z-axis.

- 3D Feature Selection
- --- 1. Features of neighbor generated with KD-Tree
 - 2. Eigen-features based on the neighbors
 - 3. Geometrical features based on Eigen-feature

PDAL is a library used to process point cloud data. it is based on C/C++, so the process is much faster than python.

	Feature Name	Description of Feature
1	KDistance	The Euclidean distance to a point's 8-th nearest neighbour
2	LocalReachabilityDistance	The inverse of the mean of all reachability distances for a neighbourhood of points
3	LocalOutlierFactor	The mean of all LocalReachabilityDistance values for the neighbourhood
4	NNDistance	Similar to KDistance
5	Eigenvalue2	The largest Eigenvalue based on its 8-nearest neighbours in 3D.
6	Eigenvalue1	The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.
7	Eigenvalue0	The smallest Eigenvalue based on its 8-nearest neighbors in 3D.
8	Rank	Computed by SVD with 8-nearest neighbours. Point sets with rank 1 correspond to linear features, while rank 2 correspond to planar features and rank 3 corresponds to a full 3D feature.
9	NormalX	The normal is taken as the eigenvector corresponding to the
10	NormalY	smallest eigenvalue.
11	NormalZ	
12	Curvature	Smallest eigenvalue divided by the sum of all three eigenvalues.
13	RadialDensity	The density of points in a sphere of a given radius. Here the radius is 2.
14	Coplanar	Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples. [16]
15	Linearity	(Eigenvalue0 - Eigenvalue1) / Eigenvalue2
16	Planarity	(Eigenvalue1 - Eigenvalue0) / Eigenvalue2
17	Scattering	Eigenvalue0 / Eigenvalue2
18	Omnivariance	(Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3)
19	Anisotropy	(Eigenvalue2 - Eigenvalue0) / Eigenvalue2
20	Eigentropy	-(Eigenvalue0 * log(Eigenvalue0) - Eigenvalue1 * log(Eigenvalue1) - Eigenvalue2 * log(Eigenvalue2)
21	Eigen_Sum	The sum of all three eigenvalues
22	Curvature_Change	Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2)
23	density_2d	The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.
24	e1_2d	The smallest Eigenvalue based on its neighbours within 20 cm in 2D.
25	e2_2d	The largest Eigenvalue based on its neighbours within 20 cm in 2D.
26	Z	Coordinate in Z-axis.

• 3D Feature Selection

pandas

 $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

- --- 1. Features of neighbor generated with KD-Tree
- -- 2. Eigen-features based on the neighbors
- -- 3. Geometrical features based on Eigen-feature

PDAL is a library used to process point cloud data. it is based on C/C++, so the process is much faster than python.

Computed as DataFrame with Pandas

	Feature Name	Description of Feature
1	KDistance	The Euclidean distance to a point's 8-th nearest neighbour
2	LocalReachabilityDistance	The inverse of the mean of all reachability distances for a neighbourhood of points
3	LocalOutlierFactor	The mean of all LocalReachabilityDistance values for the neighbourhood
4	NNDistance	Similar to KDistance
5	Eigenvalue2	The largest Eigenvalue based on its 8-nearest neighbours in 3D.
6	Eigenvalue1	The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.
7	Eigenvalue0	The smallest Eigenvalue based on its 8-nearest neighbors in 3D.
8	Rank	Computed by SVD with 8-nearest neighbours. Point sets with rank 1 correspond to linear features, while rank 2 correspond to planar features and rank 3 corresponds to a full 3D feature.
9	NormalX	The normal is taken as the eigenvector corresponding to the
10	NormalY	smallest eigenvalue.
11	NormalZ	
12	Curvature	Smallest eigenvalue divided by the sum of all three eigenvalues.
13	RadialDensity	The density of points in a sphere of a given radius. Here the radius is 2.
14	Coplanar	Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples. [16]
15	Linearity	(Eigenvalue0 - Eigenvalue1) / Eigenvalue2
16	Planarity	(Eigenvalue1 - Eigenvalue0) / Eigenvalue2
17	Scattering	Eigenvalue0 / Eigenvalue2
18	Omnivariance	(Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3)
19	Anisotropy	(Eigenvalue2 - Eigenvalue0) / Eigenvalue2
20	Eigentropy	-(Eigenvalue0 * log(Eigenvalue0) - Eigenvalue1 * log(Eigenvalue1) - Eigenvalue2 * log(Eigenvalue2)
21	Eigen_Sum	The sum of all three eigenvalues
22	Curvature_Change	Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2)
23	density_2d	The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.
24	e1_2d	The smallest Eigenvalue based on its neighbours within 20 cm in 2D.
25	e2_2d	The largest Eigenvalue based on its neighbours within 20 cm in 2D.
26	Z	Coordinate in Z-axis.

• 2D Feature Selection

Observation:

Artificial objects are often vertically distributed. => Their density is higher than others on 2D plane

Assumption:

Adding 2D features could improve the prediction.

	Feature Name	Description of Feature
1	KDistance	The Euclidean distance to a point's 8-th nearest neighbour
2	LocalReachabilityDistance	The inverse of the mean of all reachability distances for a neighbourhood of points
3	LocalOutlierFactor	The mean of all LocalReachabilityDistance values for the neighbourhood
4	NNDistance	Similar to KDistance
5	Eigenvalue2	The largest Eigenvalue based on its 8-nearest neighbours in 3D.
6	Eigenvalue1	The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.
7	Eigenvalue0	The smallest Eigenvalue based on its 8-nearest neighbors in 3D.
8	Rank	Computed by SVD with 8-nearest neighbours. Point sets with rank 1 correspond to linear features, while rank 2 correspond to planar features and rank 3 corresponds to a full 3D feature.
9	NormalX	The normal is taken as the eigenvector corresponding to the
10	NormalY	smallest eigenvalue.
11	NormalZ	
12	Curvature	Smallest eigenvalue divided by the sum of all three eigenvalues.
13	RadialDensity	The density of points in a sphere of a given radius. Here the radius is 2.
14	Coplanar	Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples. [16]
15	Linearity	(Eigenvalue0 - Eigenvalue1) / Eigenvalue2
16	Planarity	(Eigenvalue1 - Eigenvalue0) / Eigenvalue2
17	Scattering	Eigenvalue0 / Eigenvalue2
18	Omnivariance	(Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3)
19	Anisotropy	(Eigenvalue2 - Eigenvalue0) / Eigenvalue2
20	Eigentropy	-(Eigenvalue0 * log(Eigenvalue0) - Eigenvalue1 * log(Eigenvalue1) - Eigenvalue2 * log(Eigenvalue2)
21	Eigen_Sum	The sum of all three eigenvalues
22	Curvature_Change	Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2)
23	density_2d	The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.
24	e1_2d	The smallest Eigenvalue based on its neighbours within 20 cm in 2D.
25	e2_2d	The largest Eigenvalue based on its neighbours within 20 cm in 2D.
26	7	Coordinate in 7 avia

Final Result of ML Algorithm (Comparison)

Normalized confusion matrix predict score is: 0.8357713048923584

Normalized confusion matrix predict score is: 0.9144521251694725

1. Overall accuracy is improved from 83.6% to 91.4%.

-08

0.6

-04

0.2

0.0

2. The prediction precision for each class is improved, especially 31% better for building and 13% better for light.

Final Result of ML Algorithm (Part1, industrial area)

ground

1. Overall accuracy is 91.4%.

2. Precision of class "light" is 91%

Final Result of ML Algorithm (086b, residential

Normalized confusion matrix predict score is: 0.858173927252852

Final Result of ML Algorithm (086b)

Points assigned to wrong classes are shown in blue

1. The overall accuracy for 086b is 85.8%, about 6% less than the accuracy of Part1.

2. Many points of "pavement" is wrongly predicted as road, and it's understandable.

3. Precision of "light" is lower in 086b. Possible reason: there are many trees and the light may sometime hided in the branches of the trees.

PointNet++

- Unordered point set as input
- Custom partitioning
- PointNet on each partition

Data preprocessing for PointNet++

Cut scenery into chunks and center each chunk

(0,0) new origin

overall accuracy: 87% average IoU (ignoring) label 'other': 47%

overall accuracy: 87% average IoU (ignoring) label 'other': 47%

overall accuracy: 87% average IoU (ignoring) label 'other': 47%

overall accuracy: 87% average IoU (ignoring) label 'other': 47%

Extraction of light poles: 1st approach

- calculate k clusters on the predicted points as light with KMean
- select only the clusters with the largest number of points
- calculate the intersection over union (IoU) of those selected clusters on the ground truth
- iterate for different numbers of clusters k
- pick the cluster with the highest IoU

Extraction of light poles: final approach

Instead of Kmean, we use DBSCAN: clustering done with input based on distance between points and not number of cluster => As the number of cluster varies a lot from a scene to another, DBSCAN is more appropriate.

Parameters: for ground truth, t=0.003, min samples=10, for prediction t=0.006, min samples=10

Matching of Mobile Mapping Data to GCPs

• <u>Goal:</u> Match the base points of poles extracted from the segmentation to Ground Control Points derived from satellite data

PCPs

local GCPs

Point Set Registration

• Match source set to target set

Matching undistorted data

• GPS mostly accurate during acquisition: Inaccuracy as slight "noise"

Rigid Point Set Registration: ICP

<u>Steps:</u>

- 1. For each point in source set, compute closest point in target set
- 2. Compute rigid transformation that minimizes distance

Source: [9]

Rigid Point Set Registration: ICP

<u>Steps:</u>

- 1. For each point in source set, compute closest point in target set
- 2. Compute rigid transformation that minimizes distance

- Computationally simple
- Converges monotonically to closest local minimum

Source: [9]

Rigid Point Set Registration: ICP

<u>Steps:</u>

- 1. For each point in source set, compute closest point in target set
- 2. Compute rigid transformation that minimizes distance

- Computationally simple
- Converges monotonically to closest local minimum

- Provides correct results for non-distorted data
- Nearest Neighbour matching gives same results

 Source: [9]

Non-rigid Point Set Registration: GLMDTPS

Source: [14]

Testing: GLMDTPS

• Incorrect results for non-distorted data

• Better transformation given only matches

Idea: Iterated GLMDTPS

Steps:

- 1. Nearest Neighbour Matching
- 2. GLMDTPS on matches
- Reduce matching radius in later iterations

Performance:

- Correct matches
- Better transformation than ICP

Results: Iterated GLMDTPS

On non-distorted data:

ID	OD	ND
5	0.551	0.311
6	0.565	0.152
7	0.744	0.0516
9	0.741	0.231
10	0.421	0.045
24	0.613	0.163
27	0.513	0.155
avg	0.592	0.158
oto <i>4</i>		

Distances in meter

Software development

Creation of a software to integrate all algorithms together:

- Classification:
 - by Random Forest: feature extraction and classification
 - by PointNet++: classification of each chunks
- light extraction
- matching
- deformation

Segmentation & Classification

- Models trained on urbanized area in Germany => probably not robust to a different type of data
- ➤ To improve the ML algorithm, training with data from different environment will be necessary.

- Random Forest algorithm is **robust to the size** of the input.
- Machine learning (ML) algorithm needs to extract features that is time consuming
- PointNet++ algorithm is much faster
- The processing time for ML algorithm can be decreased by supporting parallelization.

Light Pole Extraction

- Improve the fine-tuning for clustering
- Create or find a Machine Learning or Deep Learning approach for clustering and pole extraction
- > include this architecture to the segmentation approach

Matching

- Iterated algorithm that
 - produces correct matches in test cases
 - robust to high outlier-ratio
 - provides non-rigid transformation as base for correction of LiDAR data

- Outlook:
 - Improve transformation

Reference:

[1] S. Montazeri, C. Gisinger, M. Eineder and X. X. Zhu, "Automatic Detection and Positioning of Ground Control Points Using TerraSAR-X Multiaspect Acquisitions," IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 5, pp. 2613-2632, 1 5 2018.

[2] E. Grilli, F. Menna and F. Remondino, "A review of point clouds segmentation and classification algorithms," in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2017.

[3] C. R. Qi, H. Su, K. Mo and L. J. Guibas, "PointNet: Deep learning on point sets for 3D classification and segmentation," in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017.

[4] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer and S. Silvio, 3d semantic parsing of large-scale indoor spaces, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, 2016.

[5] Y. Wang, T. Shi, P. Yun, L. Tai and M. Liu, "PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR Point Cloud," 17 7 2018.

[6] C. R. Qi, L. Yi, H. Su and L. J. Guibas, "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space," 7 6 2017.

[7] G. Elbaz, T. Avraham and A. Fischer, "3D point cloud registration for localization using a deep neural network auto-encoder," in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017.

[8] J. Huang and S. You, "Point cloud matching based on 3D self-similarity," in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012.

[9] P. J. Besl and N. D. McKay, "A Method for Registration of 3-D Shapes," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, 1992.

[10] S. Gold, R. A. Rangarajan, C.-P. Lu, S. Pappus and E. Mjolsness, "NEW ALGORITHMS FOR 2D AND 3D POINT MATCHING: POSE ESTIMATION AND CORRESPONDENCE Point-matching Pose estimation Correspondence Neural networks Optimization Softassign Deterministic annealing Affine transformation," 1998.

[11] G. P. Penney, P. J. Edwards, A. P. King, J. M. Blackall, P. G. Batchelor and D. J. Hawkes, "A stochastic iterative closest point algorithm (StochastICP)," in Leature Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2001.

[12] J. Yang, H. Li, D. Campbell and Y. Jia, "Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 11, pp. 2241-2254, 1 11 2016.

Reference:

[13] H. Chui and A. Rangarajan, "A new point matching algorithm for non-rigid registration," Computer Vision and Image Understanding, vol. 89, no. 2-3, pp. 114-141, 2003.

[14] Y. Yang, S. H. Ong and K. W. C. Foong, "A robust global and local mixture distance based non-rigid point set registration," Pattern Recognition, vol. 48, no. 1, pp. 156-173, 1 1 2015.

[15] M. Weinmann, B. Jutzi, C. Mallet and M. Weinmann, "GEOMETRIC FEATURES and THEIR RELEVANCE for 3D POINT CLOUD CLASSIFICATION," in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017.

[16] F. A. Limberger and M. M. Oliveira, "Real-time detection of planar regions in unorganized point clouds," Pattern Recognition, vol. 48, no. 6, pp. 2043-2053, 1 6 2015.

[17] M. Weinmann, B. Jutzi and C. Mallet, "Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features," ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vols. II-3, pp. 181-188, 7 8 2014.

[18] A. Myronenko, X. Song, M. A. Carreira-Perpiñán and P. Perpiñán, "Non-rigid point set registration: Coherent Point Drift".

[19] T. Hackel, J. D. Wegner and K. Schindler, "FAST SEMANTIC SEGMENTATION of 3D POINT CLOUDS with STRONGLY VARYING DENSITY," in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016.

[20] J. Balado, L. Díaz-Vilariño, P. Arias and L. M. González-Desantos, "Automatic LOD0 classification of airborne LiDAR data in urban and non-urban areas," European Journal of Remote Sensing, vol. 51, no. 1, pp. 978-990, 1 1 2018.

[21] M. Weinmann, M. Weinmann, C. Mallet and M. Brédif, "A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas," Remote Sensing, vol. 9, no. 3, 1 3 2017.

[22] O. Lang, P. Lumsdon, D. Walter, J. Anderssohn, W. Koppe, J. Janoth, T. Koban and C. Stahl, "Development of Operational Applications for TerraSAR-X", Remote Sensing, vol. 10, no. 10, p. 1535, 2018.

[23] J. Gitlin, "The most detailed maps of the world will be for cars, not humans", Ars Technica, 2019. [Online]. Available: https://arstechnica.com/cars/2017/03/the-most-detailed-maps-of-the-world-will-be-for-cars-not-humans/. [Accessed: 01- Aug- 2019]

Thank You!

Backup Segmentation methods

Synthetic representation of the segmentation methods

Backup Extracted Feature-1

	Feature Name	Description of Feature
1	KDistance	The Euclidean distance to a point's 8-th nearest neighbour
2	LocalReachabi	lityDistance The inverse of the mean of all reachability distances for a neighbourhood of points
3	LocalOutlierFa	ctor The mean of all LocalReachabilityDistance values for the neighbourhood
4	NNDistance	Similar to KDistance
5	Eigenvalue2	The largest Eigenvalue based on its 8-nearest neighbours in 3D.
6	Eigenvalue1	The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.
7	Eigenvalue0	The smallest Eigenvalue based on its 8-nearest neighbors in 3D.
8	Rank	Computed by SVD with 8-nearest neighbours. Point sets with rank 1 correspond to linear features, while rank 2
correspond to p	olanar	
feature	s and rank 3 cor	responds to a full 3D feature.
9	NormalX	The normal is taken as the eigenvector corresponding to the smallest eigenvalue.
10	NormalY	
11	NormalZ	
12	Curvature	Smallest eigenvalue divided by the sum of all three eigenvalues.
13	RadialDensity	The density of points in a sphere of a given radius. Here the radius is 2.
14	Coplanar	Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples.
[16]		

Backup Extracted Feature-2

- 15 Linearity (Eigenvalue0 Eigenvalue1) / Eigenvalue2
- 16 Planarity (Eigenvalue1 Eigenvalue0) / Eigenvalue2
- 17 Scattering Eigenvalue0 / Eigenvalue2
- 18 Omnivariance (Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3)
- 19 Anisotropy (Eigenvalue2 Eigenvalue0) / Eigenvalue2
- 20 Eigentropy -(Eigenvalue0 * log(Eigenvalue0) Eigenvalue1 * log(Eigenvalue1) Eigenvalue2 * log(Eigenvalue2)
- 21 Eigen_Sum The sum of all three eigenvalues 22 Curvature Change Eigenvalue0 / (E
 - Curvature_Change Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2)
 - density_2d The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.
 - e1_2d The smallest Eigenvalue based on its neighbours within 20 cm in 2D.
 - e2_2d The largest Eigenvalue based on its neighbours within 20 cm in 2D.
- 26 Z Coordinate in Z-axis.

23

24

25

Comparison of Point Cloud file format

TYPE	EXTENSION(S)	DESCRIPTION	READ	WRITE	BINARY/ASCII	POINT CLOUD(S)	MESH(ES)	OTHER	FEATURES
BIN	.bin	CloudCompare own format	х	X	binary	>1	>1	>1	Normals, colors (RGB), scalar fields (>1), labels, viewports, display options, etc.
ASCII	.asc,.txt,.xyz,.neu,.pts	ASCII point cloud file (X,Y,Z,etc.)	х	Х	ASCII	1	0	0	Normals, colors (RGB), scalar fields (all)
LAS	.las	ASPRS lidar point clouds	х	х	binary	1	0	0	Colors (RGB) and various scalar fields (see LAS 1.4 specifications)
E57	.e57	ASTM E57 file format	х	Х	mixed	>1	0	Calibrated picture(s)	Normals, colors (RGB or I), scalar field (intensity)
PCD	.pcd	Point Cloud Library format	х	Х	binary	>1	0	0	Colors (RGB), normals, scalar fields (>1)
PLY	.ply	Stanford 3D geometry format (cloud or mesh)	х	Х	both	1	1	0	Normals, colors (RGB or I), one ore several scalar fields, a single texture
OBJ	.obj	Wavefront mesh	Х	Х	ASCII	1	>1	Polyline(s)	Normals, materials and textures
νтк	.vtk	VTK file format (triangular mesh or cloud only)	х	X	ASCII	1	1	0	Normals, colors (RGB), scalar field(s) (>1)
STL	.stl	STereoLithography file format(mesh)	х	Х	ASCII	0	1	0	Normals
OFF	.off	Object File Format (mesh)	X	X	ASCII	0	1	0	0
FBX	.fbx	Autodesk (Filmbox) File Format	х	Х	ASCII or BINARY	0	>1	0	Normals, colors (RGB), materials and textures
DXF	.dxf	Autocad DXF format	Х	Х	ASCII	>1	>1	polyline(s)	Normals, colors (RGB)
SHP	.shp	ESRI Shape file format	Х	Х	binary	>1	0	Polyline(s), polygon(s), contour plot(s), etc.	Scalar fields (1 per entity)

[1] FILE I/O - CloudCompareWiki", Cloudcompare.org, 2019. [Online]. Available: https://www.cloudcompare.org/doc/wiki/index.php?title=FILE_I/O. [Accessed: 27-Jul-2019]

Point Set Registration

Case 2: Matching distorted data

- Loss of GPS signal during acquisition: possibly non-linear distortion
- Approach: Non-rigid point set registration

