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● Background & Problem Definition

● LiDAR Segmentation and Classification 

● Extraction of Pole Control Points (PCPs) for matching

● Matching of PCPs and Ground Control Points (GCPs)

● Conclusion

● Demonstration of Prototype



Background (High-Definition 3D Maps)
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● Provide HD Maps for highly automated driving

Source: [23]



Background (LiDAR Data)
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Source: [23]



Background (LiDAR Data)
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[23]Source: [23]



Background (LiDAR Data)
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[23]Source: [23]



Background (TerraSAR-X GCPs)
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● Traffic and Light Pole shows in SAR images as bright isolated points

Signal response of a point target (centre peak) in the TerraSAR-X ST 
image

Source: [22]
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● Traffic and Light Pole shows in SAR images as bright isolated points

Signal response of a point target (centre peak) in the TerraSAR-X ST 
image

Source: [22]



Original point cloud 
derived from mobile 
lidar

Problem Definition
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Objective: 

Matching extracted PCPs (Pole Control Point) with 

corresponding GCPs (Ground Control Point)
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Objective: 

Matching extracted PCPs (Pole Control Point) with 

corresponding GCPs (Ground Control Point)

Extract the lights and 
compute each of their 
pole control point
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Objective: 

Matching extracted PCPs (Pole Control Point) with 

corresponding GCPs (Ground Control Point)

Extract the lights and 
compute each of their 
pole control point



Project Plan
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Preprocessing Pipeline

Point Clouds Complexity 

Dataset Name Number of points Environment

086b_classified 9,175,355 Urbanized residential area

Werk2_classified_part1 2,044,148 Urbanized industrial area

Werk2_classified_part2 22,043,528 Urbanized industrial area



Classic Machine Learning Based on Features Extraction

Classic Machine learning architecture for point cloud segmentation

● Overview of the methodology
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Classic Machine Learning Based 
on Features Extraction

● 3D Feature Selection
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1. Features of neighbor generated with KD-Tree



Classic Machine Learning Based 
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1. Features of neighbor generated with KD-Tree

2. Eigen-features based on the neighbors
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1. Features of neighbor generated with KD-Tree

2. Eigen-features based on the neighbors

3. Geometrical features based on Eigen-feature



Classic Machine Learning Based 
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1. Features of neighbor generated with KD-Tree

2. Eigen-features based on the neighbors

3. Geometrical features based on Eigen-feature

PDAL is a library used to process point 
cloud data. it is based on C/C++, so the 
process is much faster than python.



Classic Machine Learning Based 
on Features Extraction

● 3D Feature Selection
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1. Features of neighbor generated with KD-Tree

2. Eigen-features based on the neighbors

3. Geometrical features based on Eigen-feature

PDAL is a library used to process point 
cloud data. it is based on C/C++, so the 
process is much faster than python.

Computed as DataFrame with Pandas



Classic Machine Learning Based 
on Features Extraction

● 2D Feature Selection
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Observation: 
Artificial objects are often vertically distributed. 

=> Their density is higher than others on 2D plane

Assumption: 
Adding 2D features could improve the prediction.

light



Final Result of ML Algorithm (Comparison)

Prediction

Ground Truth
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1. Overall accuracy is improved 
from 83.6% to 91.4%.

2. The prediction precision for each 
class is improved, especially 31% 
better for building and 13% better 
for light.

Prediction result from the model trained 
without 2D features

Prediction result from the model trained 
with 2D features



Final Result of ML Algorithm (Part1, industrial area)

Prediction

Ground Truth
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1. Overall accuracy is 91.4%.

2. Precision of class “light” is 91%



Final Result of ML Algorithm (086b, residential 
area)

Prediction

Ground Truth
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Final Result of ML Algorithm (086b)

Prediction

Ground Truth
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Points assigned to wrong classes are shown in blue

1. The overall accuracy for 086b is 85.8%, about 
6% less than the accuracy of Part1.

2. Many points of “pavement” is wrongly 
predicted as road, and it’s understandable.

3. Precision of “light” is lower in 086b. 
Possible reason: there are many trees and the 
light may sometime hided in the branches of the 
trees.



PointNet++
● Unordered point set as input
● Custom partitioning
● PointNet on each partition
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Data preprocessing for PointNet++
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Cut scenery into 
chunks and center 
each chunk



Final result of PointNet++: Chunk of “086b_classified”
overall accuracy: 87%
average IoU (ignoring) label ‘other’: 47% Ground Truth

Predictio
n
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semaforo 0.66

light



Final result of PointNet++: Chunk of “086b_classified”
overall accuracy: 87%
average IoU (ignoring) label ‘other’: 47% Ground Truth

Predictio
n
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road

zebra 0.82



Final result of PointNet++: Chunk of “086b_classified”
overall accuracy: 87%
average IoU (ignoring) label ‘other’: 47%

Predictio
n
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other

person 0.42



● calculate k clusters on the predicted points as light with KMean

● select only the clusters with the largest number of points

● calculate the intersection over union (IoU) of those selected clusters on the ground truth

● iterate for different numbers of clusters k

● pick the cluster with the highest IoU

Extraction of light poles: 1st approach
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Extraction of light poles: final approach
Instead of Kmean, we use DBSCAN: clustering done with input based on distance between points and not number 

of cluster => As the number of cluster varies a lot from a scene to another, DBSCAN is more appropriate. 

Parameters: for ground truth, t=0.003, min samples=10, for prediction t=0.006, min samples=10

Werk2 part1 after postprocessing
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Matching of Mobile Mapping Data to GCPs

● Goal: Match the base points of poles extracted from the segmentation to 

Ground Control Points derived from satellite data
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local GCPsPCPs



Point Set Registration

● Match source set to target set
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Source: [14]



Matching undistorted data

● GPS mostly accurate during acquisition: Inaccuracy as slight “noise”
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Rigid Point Set Registration: ICP

Steps:

1. For each point in source set, compute closest point in target set

2. Compute rigid transformation that minimizes distance
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Source: [9]



Rigid Point Set Registration: ICP

Steps:

1. For each point in source set, compute closest point in target set

2. Compute rigid transformation that minimizes distance

● Computationally simple

● Converges monotonically to closest local minimum
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Source: [9]



Rigid Point Set Registration: ICP

Steps:

1. For each point in source set, compute closest point in target set

2. Compute rigid transformation that minimizes distance

● Computationally simple

● Converges monotonically to closest local minimum

● Provides correct results for non-distorted data

● Nearest Neighbour matching gives same results
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Source: [9]



Non-rigid Point Set Registration: GLMDTPS

Source: [14]



Testing: GLMDTPS

● Incorrect results for non-distorted data

● Better transformation given only matches



Idea: Iterated GLMDTPS

Steps:

1. Nearest Neighbour Matching

2. GLMDTPS on matches

● Reduce matching radius in later iterations

Performance:

● Correct matches

● Better transformation than ICP



Results: Iterated GLMDTPS

On non-distorted data:

Distances in meter



Software development
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Creation of a software to integrate all algorithms 
together:

- Classification:
- by Random Forest: feature extraction and 

classification
- by PointNet++: classification of each 

chunks
- light extraction
- matching
- deformation



Conclusion

Segmentation & Classification

● Models trained on urbanized area in Germany => probably not robust to a 

different type of data

➢ To improve the ML algorithm, training with data from different environment 

will be necessary.
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Conclusion

● Random Forest algorithm is robust to the size of the input.

● Machine learning (ML) algorithm needs to extract features that is time 

consuming

● PointNet++ algorithm is much faster

➢ The processing time for ML algorithm can be decreased by supporting 

parallelization.

TUM-DI-Lab | 3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data



Conclusion

Light Pole Extraction

● Improve the fine-tuning  for clustering

● Create or find a Machine Learning or Deep Learning approach for clustering 

and pole extraction

➢ include this architecture to the segmentation approach
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Conclusion

Matching

● Iterated algorithm that 

○ produces correct matches in test cases 

○ robust to high outlier-ratio

○ provides non-rigid transformation as base for correction of LiDAR data

● Outlook:

○ Improve transformation
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Backup Segmentation methods 

Synthetic representation of the segmentation methods 
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Backup Extracted Feature-1
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Feature Name Description of Feature

1 KDistance The Euclidean distance to a point’s 8-th nearest neighbour

2 LocalReachabilityDistance The inverse of the mean of all reachability distances for a neighbourhood of points

3 LocalOutlierFactor The mean of all LocalReachabilityDistance values for the neighbourhood

4 NNDistance Similar to KDistance

5 Eigenvalue2 The largest Eigenvalue based on its 8-nearest neighbours in 3D.

6 Eigenvalue1 The second-largest Eigenvalue based on its 8-nearest neighbours in 3D.

7 Eigenvalue0 The smallest Eigenvalue based on its 8-nearest neighbors in 3D.

8 Rank Computed by SVD with 8-nearest neighbours. Point sets with rank 1 correspond to linear features, while rank 2 

correspond to planar

features and rank 3 corresponds to a full 3D feature.

9 NormalX The normal is taken as the eigenvector corresponding to the smallest eigenvalue.

10 NormalY

11 NormalZ

12 Curvature Smallest eigenvalue divided by the sum of all three eigenvalues.

13 RadialDensity The density of points in a sphere of a given radius. Here the radius is 2.

14 Coplanar Technique to performs a fast and robust octree-based segmentation of approximately coplanar clusters of samples. 

[16]



Backup Extracted Feature-2

15 Linearity (Eigenvalue0 - Eigenvalue1) / Eigenvalue2

16 Planarity (Eigenvalue1 - Eigenvalue0) / Eigenvalue2

17 Scattering Eigenvalue0 / Eigenvalue2

18 Omnivariance (Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3)

19 Anisotropy (Eigenvalue2 - Eigenvalue0) / Eigenvalue2

20 Eigentropy -(Eigenvalue0 * log(Eigenvalue0) - Eigenvalue1 * log(Eigenvalue1) - Eigenvalue2 * log(Eigenvalue2)

21 Eigen_Sum The sum of all three eigenvalues

22 Curvature_Change Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2)

23 density_2d The density of points, which are projected to X-Y plane, in a circle of a given radius. Here the radius is 20 cm.

24 e1_2d The smallest Eigenvalue based on its neighbours within 20 cm in 2D.

25 e2_2d The largest Eigenvalue based on its neighbours within 20 cm in 2D.

26 Z Coordinate in Z-axis.
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Comparison of Point Cloud file format
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[1] FILE I/O - CloudCompareWiki", Cloudcompare.org, 2019. [Online]. Available: https://www.cloudcompare.org/doc/wiki/index.php?title=FILE_I/O. [Accessed: 27- Jul- 2019]



Point Set Registration
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Case 2: Matching distorted data

● Loss of GPS signal during acquisition: possibly non-linear distortion

● Approach: Non-rigid point set registration
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