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Abstract 

 

In this report, we focus on the automatic extraction of pole-like 

structures from mobile LiDAR point clouds which can be used for 3D 

matching with Ground Control Points derived from TerraSAR-X 

satellite data. Different approaches were analyzed for point cloud 

classification to extract pole-like structures from the LiDAR data. We 

present two different frameworks for the point cloud classification. 

The first approach is based on classic machine learning after applying 

feature extraction for each 3D point with respect to its neighbors, after 

which each 3D point is labelled with a semantic class. The second 

framework is mainly based on a deep learning approach for point 

cloud classification. In both frameworks, the provided datasets were 

used for training models. Afterwards, the 3D points classified as light 

poles are used for the extraction of Pole Control Points (PCPs) that 

mark the ground point of a pole. At last, the PCPs are used for 3D 

matching with the ground control points from TerraSAR-X. For this 

matching, we present an iterative algorithm based on state-of-the-art 

approaches for 3D point set registration that can handle different 

degrees of coordinate distortion in the PCPs. 
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1. Introduction 

Autonomous driving is a field that has been gaining a lot of interest over the past few decades. 

A self-driving car needs to have precise information and instructions about its location in 

context to its surroundings to safely navigate in the 3D world. For this purpose, so-called High 

Definition maps or HD maps are created that have extremely high precision down to 

centimetre-level.  

Usually, a combination of different sensors such as radar and optical camera, GPS, and LiDAR, 

short for Light Detection and Ranging, which is a remote sensing method that uses a pulsed 

laser to measure ranges, are used to create HD maps and then navigate the car. This 

combination of different information provides a certain redundancy so that, in case some of the 

sensors fail to work, the remaining information is enough to navigate. 

However, the location provided by GPS sensors does not result in satisfactory levels of 

precision in many cases and can be highly distorted in case of complete or partial signal loss 

during the acquisition process, which means that the scans provided by the other sensors are 

associated with inaccurate coordinates. 

As a solution to this problem, Airbus Defence and Space proposes using geolocation data 

gained from the radar satellite TerraSAR-X to correct the inaccurate GPS locations associated 

with the data from other sensors in order to create a highly accurate HD map, or to validate 

existing maps for increasing reliability. 

Synthetic-aperture radar, such as the satellite uses to acquire images and Digital Elevation 

models, is capable of obtaining two-dimensional images or three-dimensional reconstructions 

of objects from orbit with a very high absolute geolocational accuracy. From these SAR 

images, Ground Control Points (GCPs) can be accurately extracted. GCPs are generally defined 

as points on the surface of the earth of which the coordinates are precisely known, that are used 

to geo-reference satellite imagery, and in this case mark the location of metallic pole-like 

structures on the ground or on top of buildings, since these poles have high backscatter in the 

radar images and can therefore easily be identified [1]. Based on this approach, a dense point 

cloud of GCPs can be gained with a geo-positional accuracy of less than ten centimetres.  

In order to use the accuracy of these GCPs for autonomous driving, the goal of our project was 

to detect pole-like structures in a point cloud gained from LiDAR, then compute the coordinates 

of the base point of these structures, and finally match them with the GCPs. Based on the 

matching result, we compute a transformation function to correct the coordinates of the data to 

match the GCPs. 
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2. Problem Definition and Project Plan 

The main objective of the project is to extract the ground points of pole-like structures from 

mobile LiDAR data and match these points with the corresponding GCPs, which are derived 

from TerraSAR-X satellite data. The project was divided into different work packages for each 

team member to work on specific tasks. The team consists of four students with different 

backgrounds and study majors: mathematics, urban planning, aerospace and geodesy, and 

information technology. A link to the full implementation of our results and an explanation on 

which student was responsible for which part can be found in Appendix A. 

The main tasks, as shown in Appendix A, Figure 1, for the project were defined as follows: 

1. Literature Review 

2. Data Exploration & Initial Analysis 

3. GCPs Matching Algorithms 

4. LiDAR Segmentation & Classification 

5. The fusion of LiDAR Segmentation & Classification and GCPs Matching 

6. Prototype for LiDAR 

The main project objective was divided into different sections. The first is to semantically 

segment and classify a point cloud which is obtained from mobile LiDAR scans of a street and 

extract light poles, of which then the ground points are extracted. In the following, these ground 

points are referred to as Pole Control Points (PCPs). The second is to find matching GCPs and 

PCPs. Based on this matching, a transformation matrix can be calculated, which is required for 

geometric correction of the point cloud based on the high accuracy position of GCPs. 

Therefore, the mobile LiDAR data can be corrected to obtain high definition maps of the 

surroundings.  

2.1. Datasets 

Airbus Defence and Space provided three different datasets of mobile LiDAR data showing 

different sceneries in Friedrichshafen, two datasets of Ground Control Points and satellite 

images for visualization, which are listed below: 

1. GCPs (Shapefile) 

2. Satellite imagery for the given location (Geotiff) 

3. Mobile LiDAR datasets for different sceneries (LAS, BIN (CloudCompare)) 

 Point Cloud 

The cloud point is a set of data points of scanned objects in a three-dimensional space. In our 

case, the point cloud was generated from a LiDAR mobile scanner and provided to us for 

analysis as listed in Table 1. There is a variety of file formats for storing LiDAR data and each 

format has its advantages and disadvantages from supporting metadata and projection to adding 

a new attribute for each point cloud. The classified data was provided as BIN files, which is 

shown in Figure 1, which is a specific data format for CloudCompare; However, 



   

 

9 

 

CloudCompare data format is not supported by any other software for point cloud processing 

or visualisation. Therefore, the BIN files must be transformed into LAS files which are widely 

machine-readable, as it is illustrated in Appendix B: Comparison of Point Cloud file format, 

Table 1, the different supported features for each file format. 

Table 1: Dataset of point cloud and its number of points 

Dataset Name Number of points 

086b_classified 9,175,355 

Werk2_classified_part1 2,044,148 

Werk2_classified_part2 22,043,528 

 

 

Figure 1: Dataset of Werk2_Classified_part1 point cloud 

 Ground Control Points  

The Ground Control Points provide the exact location of metallic, pole-like structures identified 

from synthetic aperture radar scans supplied by the TerraSAR-X satellite, as illustrated in 

Figure 2. These datasets do not only contain poles along streets but also other metallic objects 

which appear brighter on the images due to the radar signal reflection properties of these 

objects, for example an antenna on a rooftop or other metallic structures. 
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Figure 2: Ground Control Points overlaid above optical satellite image 

We were provided with two independently computed sets of GCPs of the area Friedrichshafen, 

of which both contain GCPs that are not represented in the other set. 

Each dataset contains a list of GCPs with ID and 3-dimensional coordinates in 𝑥𝑦𝑧 format. 

Table 2: List of GCP Datasets 

GCP Set Name Number of GCPs 

GCP set 1 6912 

GCP set 2 6185 

 

2.2. Segmentation of Mobile Mapping Data 

More and more 3D models are available, but the methods to retrieve information from them 

and give meaning to the data are still in development. Segmentation is one way to analyze this 

data. Traditionally, the idea of segmentation of 3D point cloud comes from the segmentation 

of the 2D image, for example by registering each point into a voxel or projecting the 3D object 

into 2D scenery. However, the algorithms for segmentation are computationally expansive 

when it requires preprocessing like voxelization or 2D projection and thus take a long time to 

be computed. Furthermore, both voxelization and 2D projection result in information loss and 

worse performance for the detection of small objects. Therefore, our aim is to segment the point 

cloud directly without voxelization or rendering the point cloud in 2D and at the same time to 

achieve high accuracy.  

 

2.3. Matching of Mobile Data and Satellite-Derived Ground Control Points 

The second step, the matching of the poles from the mobile mapping data and the GCPs from 

the satellite images, is based on two datasets. One contains the ground coordinates of the poles 
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along a street (PCPs), that have been extracted based on the classification from the first step, 

while the other contains the accurate GCP coordinates for a much larger area. Both datasets are 

projected into the coordinate reference system UTM32N.  

The importance of this step lies in the fact that the coordinates of the mobile mapping data are 

slightly inaccurate in almost all cases and might be highly distorted due to a loss of GPS signal 

during the acquisition process in some cases. In order to use the acquired mobile mapping data 

for autonomous driving, it is necessary to correct it to match the accurate GCPs. 

Therefore, in this step, the goal is to find two unknown variables. First, we identify correct 

matches between the two datasets with a low rate of false positives, and then use these matches 

to compute a transformation that can be used to correct the coordinates of all points from the 

LiDAR scan data.  

The problem posed by the matching between PCPs and GCPs is in general terms an instance 

of point set registration, which is defined as follows: Given two sets of points in an n-

dimensional vector space, find a transformation that best aligns the source set to the target set. 

In our case, the source set corresponds to the dataset of PCPs, the target set is provided by the 

GCPs, and we are working with three dimensions since we do not have additional 

characteristics of both GCPs and PCPs that can be used for matching except for their 

coordinates in 𝑥𝑦𝑧 format.  

An additional difficulty is posed by the independence of the two datasets. Since they stem from 

different scanning technology, are calculated in different ways, and cover a largely different 

area, there is a very high ratio of both GCPs and PCPs for which no correct match exists.  
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3. Literature Research 

The first phase of our project started with an initial literature research to identify possible 

approaches to solve both parts of the problem, of which we decided on the algorithms that 

appeared most suitable in our context to implement.  

 

3.1. Segmentation 

Segmentation is the attempt to group point clouds into clusters based on different techniques. 

In literature, there are many approaches to segment 3D models and point clouds: via edge-

based segmentation, region growing segmentation, segmentation by model fitting, hybrid 

segmentation techniques, or machine learning segmentation [2] as shown in Figure 3. 

 

Figure 3: Synthetic representation of the segmentation methods [2]. 

The traditional approach is based on retrieving features and detect regions from them. One 

approach is the edge-based segmentation [2]. This approach has two main stages: detection of 

outline borders of the different regions and then grouping points inside the boundaries to get 

the final segments. This algorithm allows a fast segmentation but on the other hand, the 

accuracy drops in case of noise and uneven density of the point cloud. 

Another approach using machine learning methods is the region growing segmentation [2] This 

approach can be implemented using different methods. These methods of segmentation are also 

in two stages: identification of seed points based on the curvature of each point and growing 

those seed points based on criteria like proximity or normal. Although these methods are more 

robust to noise compared to the edge-based segmentation method, they are sensitive to 

inaccurate estimations of the normal and curvatures of points near region boundaries and the 

location of initial seed regions. 

Besides, deep learning approaches start to develop and the most common network for 

segmenting a point cloud is PointNet [3]. It is a deep learning framework that directly consumes 

unordered point sets as inputs and has a unified approach to a number of 3D recognition tasks 

including object classification, part segmentation and semantic segmentation. The challenges 

of feeding the raw point cloud into the network are to keep the points unordered, invariant to 

N! permutations and to keep the invariance under geometric transformation. PointNet is a 
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pioneer and has achieved a good result: an overall accuracy of 78.62% on the Stanford 3D 

semantic parsing data set [4] including 271 rooms and an average IoU of 24.24% which is 

better than the previous state-of-the-art [4] who achieved 18.22%. It is even robust to data 

corruption but it does not perform well outdoors as it was trained for indoors scenes and is 

limited in complex scenes. 

In light of these issues, PointSeg [5] is a good solution. It is a real-time end-to-end segmentation 

method for outdoors scenes with an open-source code. The input must be the points which are 

projected into spherical coordinates to extract robust feature representation. This architecture 

has the advantage of being fast and it does not need a lot of memory: The system cost 12 ms 

per frame in the workstation during the forward process with 2G memory cost. However, it 

performs badly on small objects: the average IoU of a car is 67.3% but only 23.9% for 

pedestrians.  

Another recently developed deep learning approach is PointNet++ [6]. The input is also the 

raw point cloud and it partitions the set of points into overlapping local regions by the distance 

metric of the underlying space. PointNet is applied on each partition to extract local features 

and then all the features are grouped into larger units and processed to produce higher-level 

features. This network achieved state-of-the-art performance in a very challenging benchmark: 

84.5% accuracy on ScanNet whereas PointNet achieved only 73.9%. 

 

3.2. Classification 

As soon as the point cloud is segmented, each segmented group of point can be labelled with a 

specific class to identify the object and give a semantic meaning to the segment. Recently, the 

point cloud classification is becoming a very active field of research due to the increasing 

interest for autonomous driving and another related field. The class labelling for each point 

cloud is achieved following three different approaches [2]. The first is a supervised approach, 

where semantic categories are learned from a dataset of annotated data and the trained model 

is used to provide a semantic classification of the entire dataset. A large amount of annotated 

data is normally mandatory to train the model. A second approach is an unsupervised approach, 

where the data is automatically partitioned into segments based on a user-provided 

parameterization of the algorithm. No annotations are requested but the results might not 

correspond to user-defined classes with a specific semantic meaning. The last approach is an 

interactive approach, where the user is actively involved in the segmentation/classification 

loop by guiding the extraction of segments via feedback signals. This requires a large effort 

from the user side but it could adapt and improve the segmentation result based on the user’s 

feedback. 

 

3.3. 3D Point Set Registration 

In the 3D case, point set registration is most often used to align two scans of the same object 

or scenery or find the correct position of a small part of the scenery in the complete picture [7]. 

While this last use case seems similar to our problem setting, the matching approaches designed 

for that scenario assume complete scans of the sceneries to be matched, and therefore are based 

either on local features like curvature that rely on a high density scan of a surface to be 
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meaningful [8] or use a deep learning approach that requires a large amount of data [7], while 

our point sets are very sparse and lack meaningful local features. Hence, we decided to focus 

on more general approaches. 

We can differentiate between two different types of point set registration: rigid and non-rigid 

registration. In the case of rigid point set registration, it is assumed that the transformation 

needed to transform the source set into the target set is rigid, which means that it does not 

change the distance between two points, or equivalently, that the transformation is composed 

purely of rotation and translation [9]. On the other hand, in non-rigid point set registration, the 

transformation may be affine or otherwise non-linear [10].  

In the following, we will give an overview of some state-of-the-art approaches in point set 

registration. 

The most well-known algorithm in the field of rigid point set registration is the Iterative Closest 

Point algorithm (ICP) [9]. Assuming that the two-point sets are roughly aligned, it iterates steps 

of computing a match of each point in the source set to the nearest point in the target set and 

computing a rigid transformation that minimizes a chosen distance metric, originally a mean 

squares metric. In its most basic form, ICP has been shown to monotonically converge to the 

nearest local minimum. There exist many variants that address different weaknesses, such as 

sensitivity to noise or outliers [11] or to ensure a more globally optimal minimum [12]. 

Another prominent example of a rigid point set registration is Robust Point Matching (RPM) 

[10]. While it is able to find affine transformations in the 2D case, the 3D case only considers 

rotation and translation. RPM searches for a one-to-one correspondence between the point sets 

via a soft-assign approach. This means that instead of a binary correspondence, where the value 

1 stands for a match between two points and value 0 signifies no match, each pair of points 

gets assigned an initial value between 0 and 1 signifying a sort of degree of the match, and 

these values are iteratively updated before ultimately converging to either 0 or 1 while filling 

the two-way assignment constraints necessary to guarantee the one-to-one matching. RPM has 

been shown to be robust to noise and outliers due to its use of slack parameters. 

Based on RPM, a very notable approach to non-rigid point set registration is the TPS-RPM 

[13], which uses the same soft-assign method, but parametrizes the transformation with the 

help of thin-plate splines (TPS),  a technique for interpolation based on splines with a constraint 

on smoothness. In general, without the rigidity constraint, it is possible to map any point of the 

source set to any arbitrary point of the target set. To control the arbitrariness of the mapping, 

TPS-RPM uses the smoothness constraint of the TPS. Thin plate splines are the most common 

approach to model non-rigid transformations.  

Another approach that uses TPS is the GLMDTPS algorithm, short for Global and Local 

Mixture Distance TPS [14]. It starts by computing a more rigid matching based on a global 

distance metric and then iteratively moves towards a non-rigid matching weighing local 

distances more heavily by using an annealing scheme. GLMDTPS shows impressive results on 

par to several state-of-the-art algorithms including TPS-RPM and a probabilistic method called 

GMMREG in trials on cases with high outlier ratio, noise, or partially missing data. 
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4. Approaches 

The overall pipeline for our approaches is shown in the following Figure 5. Segmentation and 

classification will be approached by both machine learning and deep learning. Next, the best 

classification result is chosen, and the PCPs are extracted from that result. Finally, the PCPs 

are matched to GCPs. Each part mentioned above will be discussed in the following 

subsections. 

 

Figure 4: Overview of the proposed pipeline of our approaches 

 

4.1. Segmentation and Classification 

In this project, the segmentation of the point cloud is approached based on two different 

methods, namely classical machine learning and deep learning. Each method is benchmarked 

to investigate its advantages and disadvantages in the context of the provided problem.  

In the following subsection, we briefly summarize the main pipelines for point cloud 

classification based on the two approaches: machine learning with extracted features of each 

point and deep learning with only geospatial information. 

 Classical Machine Learning 

In general, classic machine learning (random forest, support vector machine, etc…) and feature 

extraction are applied for as an approach for point clouds classification. The basic method is 

adapted from [15] and is shown in Figure 5. However, it has been applied differently to suit 

our needs and expected results. In addition, another list of features is added to increase the 

accuracy of the classifier. Mainly, we have added 2-D Eigenvalues, 2-D density, and height of 

each point relative to the lowest point in the point clouds.  
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Figure 5: Overview of the proposed methodology 

First, we composed operations on point clouds into a pipeline to request PDAL, a library used 

to process point cloud data. PDAL is based on C/C++,  therefore the process is much faster 

than python. In our experiment, we used PDAL to create the first 14 features in the Table-1 for 

the dataset with 9175355 points and it took about 72 minutes only, meanwhile, it was not 

possible to compute any of the features in python because of the iPython kernel crashes due to 

encountered out of memory. In this process, a regional point cloud is defined by each point in 

the whole dataset and its 8 nearest neighbours. And their eigenvalues, eigenvectors, rand and 

so on were computed in regard to each regional point cloud. 

Second, the features describing the geometrical form of local point clouds were computed as 

DataFrame by Pandas. Eigenvalues devived from the first step were used here to compute the 

new features. 

Finally, by experiment, we found that the 2D features and Z coordinates of the point cloud 

could also contribute to a better classification accuracy (experiment result can be found in 

4.1.3.1). It is intuitively understandable because, in the urbanized area, many artificial 

structures are vertically distributed, such as pole, signal, and facade of a building. As shown in 

Figure 6, when the point clouds of this structure are projected onto the 2D plane, their density 

will be much higher than other objects. What's more, many objects, for example, tree and 

vehicle, are located in different heights. Therefore, the Z coordinate should also benefit the 

classification of points cloud, while in our trial the machine learning method could hardly learn 

from X and Y coordinates. Based on these findings, we provided four more features of each 

point for the following classification process, namely the 2D density of the regional points 

within a given radius (here the radius is set to 20 cm), its 2 eigenvalues, and the Z coordinate 

as defined in Table 3 and Appendix C: Point Clouds Features Definition. 

Table 3: List of defined features 

 Feature Name Description of Feature 

1 𝐾𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 The Euclidean distance to a point’s 8-th nearest neighbour 
2 𝐿𝑜𝑐𝑎𝑙𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 The inverse of the mean of all reachability distances for a 

neighbourhood of points 
3 𝐿𝑜𝑐𝑎𝑙𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝐹𝑎𝑐𝑡𝑜𝑟 The mean of all LocalReachabilityDistance values for the 

neighbourhood 
4 𝑁𝑁𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 Similar to KDistance 
5 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒2 The largest Eigenvalue based on its 8-nearest neighbours in 

3D. 
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 Feature Name Description of Feature 

6 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒1 The second-largest Eigenvalue based on its 8-nearest 

neighbours in 3D. 
7 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒0 The smallest Eigenvalue based on its 8-nearest neighbors in 

3D. 
8 𝑅𝑎𝑛𝑘 Computed by SVD with 8-nearest neighbours. Point sets with 

rank 1 correspond to linear features, while rank 2 correspond 

to planar features and rank 3 corresponds to a full 3D feature. 
9 𝑁𝑜𝑟𝑚𝑎𝑙𝑋 The normal is taken as the eigenvector corresponding to the 

smallest eigenvalue. 10 𝑁𝑜𝑟𝑚𝑎𝑙𝑌 
11 𝑁𝑜𝑟𝑚𝑎𝑙𝑍 
12 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 Smallest eigenvalue divided by the sum of all three 

eigenvalues. 
13 𝑅𝑎𝑑𝑖𝑎𝑙𝐷𝑒𝑛𝑠𝑖𝑡𝑦 The density of points in a sphere of a given radius. Here the 

radius is 2. 
14 𝐶𝑜𝑝𝑙𝑎𝑛𝑎𝑟 Technique to performs a fast and robust octree-based 

segmentation of approximately coplanar clusters of samples. 

[16] 
15 𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 (Eigenvalue0 - Eigenvalue1) / Eigenvalue2 
16 𝑃𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 (Eigenvalue1 - Eigenvalue0) / Eigenvalue2 
17 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 Eigenvalue0 / Eigenvalue2 
18 𝑂𝑚𝑛𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (Eigenvalue0* Eigenvalue1* Eigenvalue2)**(1/3) 
19 𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 (Eigenvalue2 - Eigenvalue0) / Eigenvalue2 
20 𝐸𝑖𝑔𝑒𝑛𝑡𝑟𝑜𝑝𝑦 -(Eigenvalue0 * log(Eigenvalue0) - Eigenvalue1 * 

log(Eigenvalue1) -  Eigenvalue2 * log(Eigenvalue2) 
21 𝐸𝑖𝑔𝑒𝑛_𝑆𝑢𝑚 The sum of all three eigenvalues 
22 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒_𝐶ℎ𝑎𝑛𝑔𝑒 Eigenvalue0 / (Eigenvalue0 + Eigenvalue1 + Eigenvalue2) 
23 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_2𝑑 The density of points, which are projected to X-Y plane, in a 

circle of a given radius. Here the radius is 20 cm. 
24 𝑒1_2𝑑 The smallest Eigenvalue based on its neighbours within 20 

cm in 2D. 
25 𝑒2_2𝑑 The largest Eigenvalue based on its neighbours within 20 cm 

in 2D. 
26 𝑍 Coordinate in Z-axis. 

 

 

Figure 6: Left: Point cloud  in 3D, Right: Point cloud projected to 2D Plane 

For the multi-classification task, we have chosen RandomForest as a classifier with respect to 

both accuracy and efficiency. In our experiment, we always took 80% of the whole point cloud 
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as a training set and the other 20% as the testing set. It took only 2 minutes 26 seconds to train 

a RandomForest model for a point cloud with 2044148 records in total, and 17 minutes 49 

seconds for another point cloud with 9175355 records. SVM was also considered as a classifier, 

but it has been proven infeasible as the training with approximately 1 million records took 6 

days and did not finish. The detailed performance of classification with RandomForest will be 

discussed in chapter 4.1.3. 

 Deep Learning  

The second approach using Deep Learning, we first tried to use the public code of PointSeg. 

As preprocessing, it is needed to project the point cloud onto a spherical coordinates system. 

However, our data was very different than the data used by the developers: We used a full 

scenery of a street, while they used a panoramic vision of an embedded sensor as it is used for 

real-time autonomous driving as shown in Figure 7. 

 

Figure 7: Comparison between the data used in PointSeg and our data 

In order to adapt our data for the algorithm, we created chunks from the entire scenery, and 

each chunk was centred. Then we projected each chunk onto a sphere as shown in Figure 8. 

 

Figure 8: Preprocessing of our data for PointSeg algorithm 

Even though we tried to adapt our data in the same way as the data used for training the 

PointSeg architecture, we never managed to make the algorithm work successfully. The results 

we achieved were poor as can be seen in Figure 9. 

 

Figure 9: Comparison of prediction with PointSeg between their data and our data 
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Because it was difficult to adapt our data for the PointSeg algorithm, and in addition to that, 

because it was stated in [5] that the performance of detection of small objects was not promising 

due to the downsampling by pooling layers in the architecture, we decided not to continue this 

path. Since our final goal was to extract the pole-like structures which are comparably small 

objects, we tested another algorithm: PointNet++. 

PointNet++ uses Open3D and TensorFlow GPU as framework. We needed to train the network 

with our data in order to predict light structures as it was not a class that the architecture was 

trained to recognize. Nevertheless, we did not have much data for training and testing, only 

three sceneries, and each data was labelled differently. So we used the chunks of 30m_x_30m 

created for PointSeg. We divided the chunks into a training set, validation set and test set, and 

trained the model for 500 epochs. 

 Results 

4.1.3.1. Random Forest  

For the task of multiclass-classification with classic machine learning, we chose RandomForest 

as classifier because of its high accuracy and efficiency. In every experiment, we split our 

dataset into a training set (80%) and testing set (20%).  

In the first experiment, we used the dataset “Werk2_classified_part1” with 2044148 records to 

compare the models with or without 2D features. The results are shown in Figure 10 and Figure 

11. It is clear that 2D features contribute to increasing the prediction precision for each class. 

Especially the precision of building is improved by 31%, which corresponds to our assumption 

that the vertically distributed structure would benefit from the 2D features mostly among all 

classes. The precision of light has also risen significantly from 78% to 91%, while the overall 

accuracy changed from 83.58% to 91.45%. 

  

Figure 10: Left: Model trained with 22 3D features, Right: Model trained with 26 3D and 2D Features 
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Figure 11: Left: Confusion Matrix of the testing set of “Werk2_classified_part1”, Right: visualization 

For the dataset “086b_classified”, we used the 26 features to train the RandomForest model. 

We achieved an overall accuracy of 85.82% and a precision for the class “light” of 63%, which 

were lower than the results for dataset “Werk2_classified_part1”, as shown in Figure 11. 

 

Figure 12: Left: Confusion Matrix of the testing set of “086b_classified”, and the visualization 

 

By looking closer at the confusion matrix, we can find that many points of pavement are 

labelled as a road. In Figure 12 and Figure 13, the points predicted as wrong classes are marked 

in blue, and it can be shown that many errors occur for “pavement”. Furthermore, many points 
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of “vegetation” and “light” are predicted as “other” or “building”, which reveals that the 

urbanized environment of “086b_classified” is more complicated than the 

“Werk2_classified_part1”, because in the “086b_classified” there are many trees along the 

street which may hide lights and buildings in their branches. In the later dataset, there are fewer 

trees and buildings, therefore the light poles are more outstanding from the context. 

 

Figure 13. Points assigned to wrong classes are shown in blue 

4.1.3.2. PointNet++ 

To evaluate our results with PointNet++, we used the Intersection over Union (IoU) as a metric. 

The overall accuracy is 87% and the average IoU (ignoringlabel ‘other’) is 47% (cf Figure 14). 

We computed the confusion matrix to help us understand where the errors come from. 

 

Figure 14: Qualitative results with PointNet++ 

We can see from the confusion matrix below Figure 15 that the network predicts semaforo 

(traffic light) as light, which is understandable as both have a pole-light structure, and zebras 

as road, also understandable as zebras are part of the road Figure 15. However, the network has 

difficulties recognizing persons, it predicts them as noise. Furthermore, the algorithm is trained 

on a chunk of 30mx30m, so it will only give results on a similar size of chunks. 
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Figure 15: Confusion matrix for deep learning 

4.1.3.3. Discussion 

The Random Forest algorithm is robust to the size of the input as long as the input is at least 

1m long, whereas the PointNet++ algorithm only works on small input, here 30m_x_30m. That 

is why we used the Random Forest algorithm on the three sceneries that was provided to us for 

the next steps of the project.  

However, the Random Forest algorithm is working with features extracted from the point 

cloud, and that takes a long time to extract especially when the point cloud is big. Indeed, for 

the Random Forest to be robust and accurate, it requires a large number of features for each 

point. As an example, it took us 1 hour and a half to extract features for a point cloud of 9 

million points and the prediction is still to be done. In comparison, the PointNet++ algorithm 

is quite fast to compute as it takes the point cloud directly as input. The prediction of the scenery 

of  9 million points cut into 74 chunks is done in almost 15 minutes.  

Both our algorithms for segmentation and classification are trained in an urban area in 

Germany. It means that they are probably not robust to a different type of data, like a 

countryside area or even an Asian area.  

 

4.2. Extraction of light for matching 

Once the point cloud is segmented, we want to extract each individual light structure and 

compute their PCP, in order to provide source dataset for the matching with GCPs.  

To extract each individual light structure, we need to find clusters among the points predicted 

as “light”. Several algorithms can find clusters from a point cloud, including K-Means, the 

most famous one, and DBScan.  

Using K-means for clustering requires a priori parameter K. But in reality, we usually do not 

know how to choose K because the number of light varies a lot among scenes. To solve this 

problem, we tested K-Means on our prediction by iterating a range of different value of K and 
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selecting the one with the highest IoU. This method only works if we have ground truth. 

However, in most practical cases the ground truth is not accessible.  

Instead, we can use DBScan because it takes the distance between points ε and the minimum 

number of points in each cluster as parameters. After tuning of those parameters on the 3 

sceneries, we found a default setting: ε =0.003 and min_samples=10. See results below for two 

different datasets after the random forest classification in Figure 16. 

 

Figure 16: DBScan Clustering of PCPs 

The fine-tuning accomplished is for a sparse point cloud. If the point cloud is dense, the 

clustering will be wrong. A possibility of improvement is to make the parameters of DBSCAN 

proportionate of the density, but it is still an empirical approach. A second possible way to 

improve the result is to look into machine learning or deep learning approaches for clustering, 

even maybe find or create an architecture that can segment and classify a point cloud and 

extract light structures. 

4.3. Matching 

For the matching, we started working with the already classified “Werk2_classified_part1” 

data and the “GCP set 1” set and later proceeded to test our algorithm with the results from the 

classification on the “086b” data and the “GCP set 2” set. 

 Selected Algorithms 

The matching occurs in two different types of scenarios. In most cases, if the GPS was nearly 

accurate during acquisition, a rigid matching is sufficient to provide us with correct matching 

results, since the GPS inaccuracy can be interpreted as a slight noise on the source set. We 

operated under the assumption that in this case, the inaccuracy of the mobile coordinates was 

not more than 100 cm, which is in accordance to the information provided by Airbus.  Based 

on our initial literature research, we decided to take ICP into consideration to solve these 

application cases for its computational simplicity and because the outlier ratio and minor noise 

do not pose a high danger of mismatching due to the fact that both datasets are very sparse, as 

the distance between two points in one dataset is generally several meters, and that the 

coordinates are in the same reference system and therefore already very closely aligned. Since 

the ICP converges to the closest local minimum, it is very certain to produce correct results. 

The more difficult case, that requires non-rigid matching, occurs when there was a loss of GPS 

signal while acquiring the LiDAR scans. For this case, we decided to adopt the GLMDTPS 

algorithm to our problem setting due to its impressive performance compared to other state-of-
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the-art non-rigid point set registration algorithms and the high tolerance against outliers it 

showed in the tests presented in the paper by Yang et al. [14]. 

 Implementation and Testing 

As there are many open-source implementations for ICP, we decided to run two 

implementations on our data, to compare the results. For one, we picked the ICP 

implementation provided in CloudCompare, and as the second, the point-to-point version 

included in the Open3D package for Python. 

For first testing, we manually identified the correct matches between the already classified, 

non-distorted “Werk2_classified_part1” file and the first GCP file. From 30 pole ground points 

extracted from the “Werk2_classified_part1” file, seven have matches among the GCPs. This 

is the expected result. 

Both implementations of ICP resulted in the same seven matches and a transformation very 

close to the identity transformation. For further comparison, we also used a simple nearest-

neighbor matching on the same datasets, which produced the exact same matches, hence 

rendering the ICP unnecessary except for the slight rigid transformation. 

For GLMDTPS, there exists a demo implementation in MATLAB provided by Yang et al. [14]. 

Since it was not designed for use cases to match two separate datasets, it only takes one dataset 

as input, deforms it, and finds a transformation back to the original. We adapted this 

implementation to identify matches and transformation for two independent datasets.  

Since all datasets provided to us are assumed accurate except for slight noise and we did not 

have distorted datasets to test with, we used the same data as for the ICP to gain a first 

impression of its performance. It was immediately clear that it does not provide correct results 

for our datasets due to the high ratio of points that do not have matches in both datasets. 

Furthermore, the local distance metric used is based on neighboring relations between points 

in one dataset. While this does not pose a problem even with many outliers in the target set in 

case that every point in the source set has a match in the target set, the amount of PCPs that do 

not have matching GCPs resulted in loss even of the matches that are correct and already very 

close to each other, as can be seen in Figure 17. On the left, there are the PCPs extracted from 

“Werk2_classified_part1”. The second picture shows the PCPs together with a local subset of 

the GCP set before the transformation, while the last picture shows the same sets after 

transformation. Although in the middle picture we can clearly see some correct matches, the 

right picture shows none. 

However, given sets of data that only contain the matches found via nearest neighbor matching, 

the GLMDTPS came to the correct conclusions and the thin plate spline-based transformation 

resulted in a more exact correspondence between the two sets than the ICP could provide. Since 

Figure 17: Demonstration of GLMDTPS. Left: PCPs from “Werk2_classified_part1”. Middle: PCPs and local GCPs 

from “GCPs set 1” before GLMDTPS. Left: After GLMDTPS. 
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the GLMDTPS can also compute transformations for non-rigid cases, we decided to replace 

the ICP with nearest neighbor matching and a GLMDTPS transformation in all cases, despite 

the higher computational complexity. 

Therefore, we decided to implement and test an iterative algorithm based on nearest neighbor 

matching and GLMDTPS in order to find the correct matches and compute a transformation 

that can be used to correct all points in the local LiDAR point cloud. The algorithm iterates 

between computing matches via a nearest neighbor, computing a transformation based on these 

matches with the GLMDTPS, and using this transformation on all PCPs. Then we repeat these 

steps with the transformed PCPs and the GCP set until no new matches are found or the 

resulting transformation delivers worse results.  

Table 4: Results of iterated GLMDTPS with different thresholds for nearest neighbor matching 

Matching Threshold in cm Matches Distance after transformation 

100 Correct Increased to avg 56 cm 

90 Correct Decreased to avg 31 cm 

80 Incorrect Decreased to avg 31 cm 

  Original distance: avg 41 cm 

Trials have shown that for the nearest neighbor-based matching, a matching threshold of 90 

cm for the initial matching and 70 cm in each further iteration provide the best results for 

matching and transformation, as shown in Table 4. These results are based on the dataset 

“086b” as this matching proved to be the most difficult. For “Werk2_classified_part1”, all of 

the matching thresholds in the table provided the same results. 

 Results 

This iterated GLMDTPS algorithm resulted in the correct matches for both the 

“Werk2_classified_part1” and “086b” datasets in combination with both GCP sets and 

provided a transformation that significantly lowered the average distance between matches, 

with one set of PCPs achieving considerably better results than the other with both sets of 

GCPs. Examples for the distances of matches before and after running the iterated GLMDTPS 

can be seen in Table 5, which describes the difference before and after the algorithm for two 

test cases. The left shows the matching of PCPs from “werk2_classified_part1” to “GCP set 

1”, the right the matching of PCPs from “086b” to “GCP set 1”. On both sides, the first column 

contains the ID of the PCP, the second column the original distance to its matching GCP, and 

the third column the distance between the match after the transformation. The higher distance 

after the transformation in case of the “086b” file can be explained by the higher complexity 

of the set. Results from the matching to “GCP set 2” can be found in Appendix D, Table 1. 
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Table 5: Distances of matches before and after iterated GLMDTPS. ID: ID of PCP. OD: Distance between PCP and 

matching GCP before transformation. ND: Distance after transformation. 

ID OD ND  ID OD ND 

5 0.551 0.311 1 0.587 0.264 

6 0.565 0.152 16 > 0.9 0.544 

7 0.744 0.0516 17 0.519 0.168 

9 0.741 0.231 40 0.473 0.105 

10 0.421 0.045 47 0.270 0.503 

24 0.613 0.163 49 0.351 0.306 

27 0.513 0.155 55 0.199 0.243 

   56 0.477 0.372 

avg 0.592 0.158 avg 0.411 0.313 

 

Since we did not have distorted datasets to test on, we artificially distorted the PCPs gained 

from “Werk2_classified_part1” with two affine transformations and sent the resulting datasets 

to our mentors at Airbus, who confirmed that these artificial distortions were useful examples 

for testing purposes. The distortion resulted in an average distance of 5.7 meters, respectively 

8.4 meters, from the original point to the distorted point, within both cases four points within 

the 90 cm initial matching distance from their original. Our algorithm was able to completely 

reconstruct the original coordinates from the artificially distorted ones. The results for these 

four points for one of the two datasets, including initial distance and distance after the 

algorithm, are shown in Table 6.  A full table with coordinates and all distances from the same 

dataset can be found in Appendix D, Table 2. 

Table 6: Distances between matches of artificially distorted data before iterated GLMDTPS and after.  ID: ID of 

distorted PCP. OD: Distance between distorted point and original point before transformation. ND: Distance after 

transformation. 

ID OD ND 

0 0.015 0 

1 0.072 0 

2 0.784 0 

24 0.788 0 
 

Using the transformation gained from the algorithm on the distorted points that were not within 

matching distance for the initial matching also correctly reconstructed them and matched them 

to their undistorted counterpart.  

A weakness that we have not yet addressed in our implementation is that our algorithm assumes 

that, even with distorted datasets, there exist initial matches to base a first transformation on, 

which might not be true in case there was an extremely distorted GPS signal in course of the 

whole scanning process of the street. However, this might be fixed if the user can manually 

provide a few initial matches for a first transformation. 

With these results, we gained an algorithm that provides a transformation which can be used 

to attempt geometric correction of all points in the LiDAR point cloud. 
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4.4. Software Prototype 

In order to integrate all the algorithms together and have the pipeline working from raw data 

to the creation of the HD map, we built a small software in Python.  

The first function of the software is to compute the segmentation and the classification of a 

point cloud and to display it. It then extracts the PCPs and displays them in another viewport. 

Furthermore, the matching process will be run in the background and the correspondence 

between PCPs and GCPs will be shown in the third viewport. Finally, the deformation of the 

input point cloud is computed in regard to the best matching between PCPs and GCPs with 

minimum distance. 

As the segmentation and classification part takes a long time to compute, the software is 

designed in two modes: demo and test. The demo mode plots the four steps for the dataset that 

we worked with.  Every output was computed by us previously before saved, so the software 

just needs to load the results to present a fast and functional demo.  

Nevertheless, it is possible to test the full pipeline to create the HD map for new input data 

using the test mode. The user can choose either the RandomForest model or PointNet++ 

architecture we trained before to segment and classify their own datasets of the point cloud. 

We noticed that the visualisation of the point clouds with the matplotlib library is very time-

consuming to display a big scene and the plotted points are hard to distinguish due to poor 

resolution. Therefore, we added an option to visualize the results with CloudCompare, an open-

source software.  

See Appendix E for the full documentation and screenshots of the software.
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5. Conclusion 

In this report, we have presented two different frameworks for point cloud classification. They 

are divided into classic machine learning, which is based on point sampling, neighborhood 

recovery, and features extraction, with which then classic machine learning algorithms such as 

Random Forest are applied, and a deep learning approach, which uses PointNet++. Using the 

two different frameworks, we have analyzed the main differences regarding applying both 

methods for LiDAR dataset classification. The classic machine learning framework provides 

the more robust and computationally efficient approach without the need for GPU access for 

computation. On the other side, the deep learning approach is more time-efficient and designed 

for real-time classification. Nevertheless, further improvement for both algorithms is to train 

them on different types of data, so they become robust to any kind of area. 

In order to make use of the segmentation for matching with GCPs, we have implemented a 

method to extract the PCPs from the pole-like structures that were produced in the previous 

step. For this, we have chosen to use DBScan instead of K-means because it can easily be 

applied to sceneries with promising results without knowing the number of poles beforehand. 

For the matching between the Pole Control Points extracted from the mobile data and the 

Ground Control Points gained from the radar satellite data, we have presented an algorithm 

based on different point set registration methods that correctly identifies matches between the 

two sets and produces a thin-plate-spline based transformation that can be used to correct the 

coordinates of all points in the point cloud from the LiDAR dataset.  

An impulse for further optimization is to investigate the potential of replacing the GLMDTPS 

with another algorithm that provides a TPS based transformation based on two already matched 

sets, to get a more computationally efficient result, since we are already aware of the correct 

matches when the GLMDTPS is called. Furthermore, it might be possible to get an even more 

accurate transformation with further tuning of the transformation specifically for this matching 

problem. We have summarized ideas of improvement in Appendix F, Table 1. 

In conclusion, in the course of this project we have developed an algorithm that, provided with 

an unclassified LiDAR point cloud and a set of GCPs, results in a geometrically corrected 

version of the point cloud, and while the result is certainly not perfect yet, it is a very good base 

for further research into this direction.  
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Appendix  

Appendix A: Gitlab Repository and Responsibilities 

The complete implementation is to be found on the following Gitlab repository 

https://gitlab.lrz.de/3d-matching-terrasar-dgcp/3D-Matching-Prj. 

The master branch contains some README files and some manuals while the code has been 

completely deployed on the master branch. In addition, the python development environment 

is defined under environment.yml, which can be used to create an identical development conda 

environment. 
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Appendix B: Comparison of Point Cloud file format 

Table 2: Point Clouds File Formats 1 

TYPE EXTENSION(S) DESCRIPTION READ WRITE BINARY/ASCII POINT 
CLOUD(S) 

MESH(ES) OTHER FEATURES 

BIN .bin CloudCompare own 
format 

X X binary >1 >1 >1 Normals, colors (RGB), scalar fields (>1), 
labels, viewports, display options, etc. 

ASCII .asc,.txt,.xyz,.neu,.pts ASCII point cloud file 
(X,Y,Z,etc.) 

X X ASCII 1 0 0 Normals, colors (RGB), scalar fields (all) 

LAS .las ASPRS lidar point clouds X X binary 1 0 0 Colors (RGB) and various scalar fields 
(see LAS 1.4 specifications) 

E57 .e57 ASTM E57 file format X X mixed >1 0 Calibrated 
picture(s) 

Normals, colors (RGB or I), scalar field 
(intensity) 

PCD .pcd Point Cloud 
Library format 

X X binary >1 0 0 Colors (RGB), normals, scalar fields (>1) 

PLY .ply Stanford 3D geometry 
format (cloud or mesh) 

X X both 1 1 0 Normals, colors (RGB or I), one ore 
several scalar fields, a single texture 

OBJ .obj Wavefront mesh X X ASCII 1 >1 Polyline(s) Normals, materials and textures 

VTK .vtk VTK file format 
(triangular mesh or cloud 

only) 

X X ASCII 1 1 0 Normals, colors (RGB), scalar field(s) (>1) 

STL .stl STereoLithography file 
format(mesh) 

X X ASCII 0 1 0 Normals 

OFF .off Object File 
Format (mesh) 

X X ASCII 0 1 0 0 

FBX .fbx Autodesk (Filmbox) File 
Format 

X X ASCII or BINARY 0 >1 0 Normals, colors (RGB), materials and 
textures 

DXF .dxf Autocad DXF format X X ASCII >1 >1 polyline(s) Normals, colors (RGB) 

SHP .shp ESRI Shape file format X X binary >1 0 Polyline(s), 
polygon(s), 

contour 
plot(s), etc. 

Scalar fields (1 per entity) 

                                                

1 FILE I/O - CloudCompareWiki", Cloudcompare.org, 2019. [Online]. Available: https://www.cloudcompare.org/doc/wiki/index.php?title=FILE_I/O. [Accessed: 27- Jul- 2019] 
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Appendix C: Point Clouds Features Definition 

Linearity 𝐿λ =
𝑒1−𝑒2

𝑒1
 

Planarity 𝑃λ =
𝑒2−𝑒3

𝑒1
 

Sphericity 𝑆λ =
𝑒3

𝑒1
 

Omnivariance 𝑂λ = √𝑒1𝑒2𝑒3
3  

Anisotropy 𝐴λ =
𝑒1−𝑒3

𝑒1
 

Eigenentropy 𝐸λ = − ∑ 𝑒𝑖
3
𝑖=1 ln(𝑒𝑖) 

Sum Σλ = 𝑒1 + 𝑒2 + 𝑒3 

Surface Variation 𝐶λ =
𝑒3

𝑒1+𝑒2+𝑒3
 

Vertical range 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛 

Height below 𝑧 − 𝑧min 

Height above 𝑧max − 𝑧 
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Appendix D: Additional Data from Matching 

Appendix D, table 1: Matching results from “Werk2_distorted_part1” (left) and “086b” (right) to “GCP set 2” 

Werk2_distorted_part1  086b 

ID Old dist New dist ID Old dist New dist 

3 0.369245 0.059914 12 0.719338 0.269985 

4 0.33859 0.264001 16 > 0.9 0.290413 

5 0.500798 0.123644 47 0.477042 0.157817 

6 0.612463 0.246414 49 0.427185 0.167782 

7 0.80341 0.078584 58 0.45697 0.15696 

9 0.658169 0.110414 68 0.327925 0.158512 

27 0.589117 0.13996 74 > 0.9 0.626156 

Avg dist 0.553113 0.146133 Avg dist 0.481692 0.261089 

 

Appendix D, table 2: Artificially distorted data before and after matching 

 Coordinates before transf.  Coordinates after transf.   

ID X Y Z Dist X Y Z Dist Match 

0 535016.477 5278932.456 455.984 0.015 535016.477 5278932.456 455.984 0.0 0 

1 535012.878 5278930.911 457.949 0.072 535012.878 5278930.911 457.949 0.0 1 

2 535053.412 5278904.430 455.682 0.785 535053.413 5278904.430 455.682 0.0 2 

3 535080.684 5278915.946 455.324 1.293 535080.684 5278915.946 455.324 0.0 3 

4 535122.614 5278933.093 455.192 2.123 535122.614 5278933.093 455.192 0.0 4 

5 535162.148 5278949.454 455.371 2.919 535162.148 5278949.454 455.371 0.0 5 

6 535197.013 5278963.638 455.358 3.626 535197.013 5278963.638 455.358 0.0 6 

7 535232.101 5278977.952 455.590 4.338 535232.101 5278977.952 455.590 0.0 7 

8 535265.856 5278991.608 455.515 5.024 535265.856 5278991.608 455.515 0.0 8 

9 535305.835 5279007.793 455.516 5.838 535305.835 5279007.793 455.516 0.0 9 

10 535372.042 5279034.796 455.334 7.187 535372.042 5279034.796 455.334 0.0 10 

11 535392.732 5279052.366 458.165 7.622 535392.732 5279052.366 458.165 0.0 11 

12 535418.407 5279051.466 455.744 8.129 535418.407 5279051.466 455.744 0.0 12 

13 535453.474 5279054.303 459.307 8.122 535453.474 5279054.303 459.307 0.0 13 

14 535456.583 5279050.631 456.114 8.883 535456.583 5279050.631 456.114 0.0 14 

15 535488.158 5279038.627 456.600 9.495 535488.158 5279038.627 456.600 0.0 15 

16 535527.966 5279037.015 457.272 10.285 535527.967 5279037.015 457.272 0.0 16 

17 535550.071 5279070.050 457.568 10.762 535550.071 5279070.050 457.568 0.0 17 

18 535533.836 5279105.652 457.592 10.494 535533.836 5279105.652 457.592 0.0 18 

19 535494.853 5279110.519 457.594 9.735 535494.853 5279110.519 457.594 0.0 19 

20 535467.716 5279095.905 457.150 9.174 535467.716 5279095.905 457.150 0.0 20 

21 535439.135 5279084.118 456.922 8.591 535439.135 5279084.118 456.922 0.0 21 

22 535401.815 5279068.766 457.507 7.829 535401.815 5279068.766 457.507 0.0 22 

23 535388.195 5279063.077 457.352 7.551 535388.195 5279063.077 457.352 0.0 23 

24 535055.841 5278927.509 455.452 0.788 535055.841 5278927.509 455.452 0.0 24 

25 535215.823 5279009.808 460.885 4.064 535215.823 5279009.808 460.885 0.0 25 

26 535161.668 5278974.779 455.692 2.937 535161.668 5278974.779 455.692 0.0 26 

27 535258.400 5279017.648 455.922 4.916 535258.400 5279017.648 455.922 0.0 27 

28 535252.529 5279005.835 458.099 4.780 535252.529 5279005.835 458.099 0.0 28 

29 535217.006 5279000.096 458.692 4.070 535217.006 5279000.096 458.692 0.0 29 
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Appendix E: Software Documentation 

Purpose of the software 

This software regroups all the different algorithms we developed and tried in the context of 

the Airbus project. This software includes : 

- A demonstration part, where the segmentation of the point cloud, the extracted light 

points, the matching with GCP and the deformation with GCP have been 

precalculated and are displayed as such. 

- A test part, where the same results are displayed after their computation. 

 

Overall presentation 

The software is decomposed in three parts: the home page, which one access when launching 

the software, the demonstration part and the test page. 

Home page 

When launching the software, one should encounter the following screen: 

 

 

Home page: default screen 
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Starting from this point, one should make the choice of going for the demonstration mode, or 

for the test mode. 

 

Demonstration mode 

When going for the demonstration mode, one has two choices to make: the selection of the 

precomputed scene, and the tool used to visualize the results. 

 

 

Home page: demo mode 

 

Selection of the scene 

When arriving to the home page and when one has selected the demonstration mode, one has 

to choose a scene. You have the choice between three different german streets: 

- 086b 

- Werk2 part 1 

- Werk2 part 2 

 

When choosing the scene, the following choice to make appears. 
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Selection of the visualization tool 

When arriving at the home page and when one have selected the demonstration mode and the 

scene, one has to choose a visualization tool. You have a choice between two visualization 

tools: 

- matplotlib - which will then be included directly into the software, but will be really 

slow to load. 

- CloudCompare - which is free software that loads the points faster and has a more 

logical presentation of the points. 

 

 

Test mode 

When going for the test mode, one has two choices to make and one file to specify: the 

selection of the segmentation algorithm to use, of the visualization tool and specification of 

the location of files needed by the algorithm. 

 

 

Home page: test mode 

 

https://www.danielgm.net/cc/
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Selection of the segmentation algorithm 

When arriving at the home page and when one has selected the test mode, one has to choose a 

segmentation algorithm to use. You have a choice between two algorithms: 

- Random Forest - which is a Machine Learning algorithm that we pre-trained. 

- PointNet++ - which is a Deep Learning algorithm that we also pre-trained. 

 

Please note that using the Deep Learning algorithm will require a functional GPU along with 

CUDA. 

 

Files needed by the algorithm 

Both algorithms will require you to specify additional files.  

 

If you choose to use PointNet++, it will be asked for you to specify the folder in which the 

different data chunks are stored.  

Please note that those chunks have to be centred. 

 

If you choose to use Random Forest, it will be asked for you to specify the LAS file, 

containing the (x,y,z) coordinates of the 3D scene. 

 

Selection of the visualization tool 

When arriving at the home page and when one have selected the test mode and the scene, one 

has to choose a visualization tool. You have a choice between two visualization tools: 

- matplotlib - which will then be included directly into the software, but will be really 

slow to load. 

- CloudCompare - which is free software that loads the points faster and has a more 

logical presentation of the points. 

 

 

Results page 

When finishing the different choices you had to make in the home page, you will be 

redirected to the results page. 

 

The result page is decomposed into 4 distinct parts: 

https://en.wikipedia.org/wiki/Random_forest
https://arxiv.org/abs/1706.02413
https://www.danielgm.net/cc/
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- The first part is composed of the segmentation, where you’ll see the accuracy in case 

you are in the demonstration mode, and the segmented point cloud, where the 

different classes are shown using different colours. 

- The second part is composed of the extracted light point cloud. The precision and the 

recall will also be displayed in case you are in the demonstration mode. 

- The third panel is matching with GCP. 

- The fourth and last part is the deformed point cloud using GCP. In this part, you will 

also see a button named Distance information (cf Distance Information part). 

 

 

Result page 
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When choosing matplotlib as a visualization tool, the different point clouds will be 

interactive, which means one can click on the figures to navigate the point cloud. 

 

When choosing CloudCompare as a visualization tool, one will have to choose to display 

the x, y and z coordinates and will then be able to navigate the point cloud. 

 

Please note that the accuracy, the precision and the recall won’t be accessible in the test 

mode, as one doesn’t necessarily have access to the ground truth. 

 

Distance information 

In the fourth panel, that is “Deformed with GCP”, you will notice a button named “Distance 

information”. 

Clicking on this button will make a new window appear, containing the different distances 

computed during the deformation. One will then be able to compare the old distance and the 

new distance. 

 

 

Result page: Distance information 
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Appendix F: Potential improvement of different methods 

Table 1: Potential improvement of the different approaches 

Random Forest 

and Pdal Pipeline 

The overall pipeline of point cloud processing does not support multi-

thread and parallelization. Therefore, the processing time can be 

decreased by supporting parallelization.  

PointNet++ We could have used another approach with PointNet++: train on one 

scene, use a second for validation and the third for testing. It is 

important to normalize the coordinates for each scenes. 

With this kind of training, we can now test if the model is robust to the 

size of the cloud.  

Extraction -Improve the fine-tuning of the parameters (epsilon and min_samples) 

of DBSCAN for clustering.  

-Create or find a machine learning or deep learning approach for 

extraction of the light pole. Maybe include this architecture to the 

segmentation approach. 

Matching Replace GLMDTPS by an algorithm that only computes the TPS-

based transformation based on given matches, tune the TPS for more 

accurate transformation, give option to manually provide first matches 

in case nearest neighbor does not find correct ones (strong distortion 

of whole dataset). 
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